The fact that evaluating ∇f(x) is as fast as f(x) is very important and often misunderstood http://timvieira.github.io/blog/post/2016/09/25/evaluating-fx-is-as-fast-as-fx/ …https://twitter.com/gabrielpeyre/status/1167663307668373504 …
U tweetove putem weba ili aplikacija drugih proizvođača možete dodati podatke o lokaciji, kao što su grad ili točna lokacija. Povijest lokacija tweetova uvijek možete izbrisati. Saznajte više
Yup! And you can split the underlying computational graph to mix and match - although calculating the optimal combination of forward and backwards passes is NP complete in the general case.
You can also optimize for different time-space complexity tradeoffs! I wrote about some of that here for the special case of RNNs http://timvieira.github.io/blog/post/2016/10/01/reversing-a-sequence-with-sublinear-space/ …
Yup! From an API point of view - it means that methods that approximate the Hessian as J^T J (with J as the Jacobian evaluated along the m residuals) are very hard to use efficiently with AD.
Twitter je možda preopterećen ili ima kratkotrajnih poteškoća u radu. Pokušajte ponovno ili potražite dodatne informacije u odjeljku Status Twittera.