Another result, modifying the ‘deep stem’ from Bag of Tricks. Tiering the stem to (24, 48, 64) or (24, 32, 64) shows benefit over the D stem of (32, 32, 64). 77.6% D vs 78.0% for tiered on an SE-ResNeXt26-32x4d base. Tiered stem inspired by @jeremyphoward
-
-
Prikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi
-
-
-
This is excellent! Are you gonna release code ?
-
Pushed all the relevant code and weights yesterday to https://github.com/rwightman/pytorch-image-models … ... the hparams (cmd line) for the ResNet50 run will be added in a day or two.
- Još 1 odgovor
Novi razgovor -
-
-
I will! Curious, the impl I see in your github, you replaced the stem MaxPool with MaxBlurPool, and the ResBlock downsample AvgPool with MaxBlurPool, and leave global AvgPool as is. The paper suggests replacing AvgPool with BlurPool (non max). What did you try so far?
- Još 3 druga odgovora
Novi razgovor -
-
Hvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi
-
Čini se da učitavanje traje već neko vrijeme.
Twitter je možda preopterećen ili ima kratkotrajnih poteškoća u radu. Pokušajte ponovno ili potražite dodatne informacije u odjeljku Status Twittera.