Walter de Back  

@wdeback

tissue modeling - bioimaging - data science - deep learning

Dresden
Vrijeme pridruživanja: srpanj 2014.

Tweetovi

Blokirali ste korisnika/cu @wdeback

Jeste li sigurni da želite vidjeti te tweetove? Time nećete deblokirati korisnika/cu @wdeback

  1. Prikvačeni tweet
    7. stu 2019.

    Out now: our paper on ageing of the hematopoetic stem cell niche .

    Prikaži ovu nit
    Poništi
  2. Here’s a blog reporting on our hackathon work predicting the Elbe river flow and uncertainties using ConvLSTMs. Written by Lennart Schmidt.

    Poništi
  3. 7. stu 2019.

    Congratulations to all collaborators, and in particular to Mehmet Saçma (), Johannes Pospiech and Carolina Florian!

    Prikaži ovu nit
    Poništi
  4. 7. stu 2019.

    Here's the sharable link:

    Prikaži ovu nit
    Poništi
  5. proslijedio/la je Tweet
    30. lis 2019.

    Not in Okiwana? See our renewed Morpheus tutorials for self-paced learning

    Poništi
  6. proslijedio/la je Tweet
    13. ruj 2019.

    You don‘t see this every day: predictions from a ConvLSTM including uncertainties!! The team from mentored by and reach for the Crown Jewels in data driven science.

    Poništi
  7. proslijedio/la je Tweet
    8. ruj 2019.
    Odgovor korisniku/ci

    I recommend you those type of simulations can be run with very little effort. You can start here:

    Poništi
  8. proslijedio/la je Tweet

    1/ Machine learnists, biologists, and everyone in between: share your ideas to inspire meaningful discussion at on how your fields will advance one another. Short abstracts (no papers) for first LMRL due Sept 16, many travel grants available!

    Prikaži ovu nit
    Poništi
  9. 2. ruj 2019.

    For the tissue modelers tweeps among you: is tweeting on our workshop / hackathon on standardization of multicellular models.

    Poništi
  10. proslijedio/la je Tweet
    18. lis 2018.

    DeepMind is releasing their GraphNets library: - a very comprehensive and easy-to-use library for training graph (neural) networks and related models

    Prikaži ovu nit
    Poništi
  11. proslijedio/la je Tweet
    14. kol 2019.

    Want to detect and segment densely packed nuclei in noisy microscopy stacks? Then have a look at StarDist, which we just extended to 3D! Paper: Code:

    Prikaži ovu nit
    Poništi
  12. 8. srp 2019.

    Boundary loss as an alternative for Dice loss in image segmentation in case of unbalanced data

    Poništi
  13. 8. srp 2019.

    More info on CNNs on graphs here:

    Prikaži ovu nit
    Poništi
  14. 8. srp 2019.

    Opening of . Next up M. Bronstein on "Deep learning on graphs and manifolds". Live stream here:

    Prikaži ovu nit
    Poništi
  15. 7. srp 2019.

    Just landed in London to learn about the hottest in medical imaging at . Here's our poster (A-M-17) on estimating age and its uncertainties from dental X-rays with Bayesian CNNs. Come by and let's talk!

    Poništi
  16. proslijedio/la je Tweet
    2. srp 2019.

    First and new realistic 3D model of the liver lobule since the year 1949. Publication of the research lab of director Marino Zerial with first author & collaboration with MPI-PKS & .

    Poništi
  17. 2. srp 2019.

    now out in : our study revealing long-range patterns in seemingly amorphous liver tissue:

    Poništi
  18. 3. lip 2019.

    now online: our paper on the use of deep object detection networks to detect HER2 amplification status from FISH images

    Poništi
  19. Incorporating shape priors in convolutional neural networks for image segmentation.

    Poništi
  20. proslijedio/la je Tweet
    13. svi 2019.

    Beautiful work studying the spread of HIV-1 through tissues -- they used ABC () to fit Morpheus models () to experimental data of 2D/3D collagen assays. Now out in Nat. Comm.

    Poništi

Čini se da učitavanje traje već neko vrijeme.

Twitter je možda preopterećen ili ima kratkotrajnih poteškoća u radu. Pokušajte ponovno ili potražite dodatne informacije u odjeljku Status Twittera.

    Možda bi vam se svidjelo i ovo:

    ·