We adapted a technique from human fMRI work (hyperalignment, inspired by @haxbylab) enabling us to use how subject 1 encodes A and B (e.g. left and right arms of a maze), and how subject 2 encodes A, to predict how subject 2 encodes B. 2/
-
-
Prikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi
-
-
-
Hvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi
-
-
-
Surprisingly, this between-subject prediction worked better than the within-subject controls we tried, and simulations suggest simple explanations such as correlated firing rates between A and B can be ruled out. 3/
Prikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi
-
-
-
Thus, we think between-subject prediction is a neat analysis approach that suggests an underlying regularity in how different places are mapped in the rodent hippocampus. Preprint with
@jeremyRmanning and@mattmizumi: https://www.biorxiv.org/content/10.1101/2020.01.27.922062v1 ….Prikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi
-
-
-
Heeeyy!!! It worked!! Nice!!
Hvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi
-
Čini se da učitavanje traje već neko vrijeme.
Twitter je možda preopterećen ili ima kratkotrajnih poteškoća u radu. Pokušajte ponovno ili potražite dodatne informacije u odjeljku Status Twittera.