Tweetovi

Blokirali ste korisnika/cu @the_real_pdf

Jeste li sigurni da želite vidjeti te tweetove? Time nećete deblokirati korisnika/cu @the_real_pdf

  1. proslijedio/la je Tweet
    24. sij

    I have just released versions 0.9.1 and 0.10.0 of seaborn, a Python library for data visualization. The new versions contain a number of improvements, and version 0.10.0 drops support for Python 2. Check out the release notes for more information:

    Poništi
  2. proslijedio/la je Tweet
    24. sij

    Introducing scikit-geometry, a Python library with useful geometric types and functions for and :

    Poništi
  3. proslijedio/la je Tweet
    13. pro 2019.

    🐼🤹‍♂️ pandas trick #96: Want to create interactive plots using pandas 0.25? 📊 1. Pick one: ➡️ pip install hvplot ➡️ conda install -c conda-forge hvplot 2. pd.options.plotting.backend = 'hvplot' 3. df.plot(...) 4. 🥳 See example 👇

    Poništi
  4. proslijedio/la je Tweet
    12. pro 2019.

    Excited to announce that the 3rd ed of Python Machine Learning is now finally available! What's new? In a nutshell: Ch1-12 upd for sklearn 0.22; Ch 13-16 upd. for TensorFlow 2. And most excitingly: 2 new chapters (17&18) -> GANs and Reinforcement Learning!

    Poništi
  5. proslijedio/la je Tweet
    11. pro 2019.

    Altair 4.0 is released! Try it with: pip install -U altair The full list of changes is at ...read on for some highlights.

    Prikaži ovu nit
    Poništi
  6. proslijedio/la je Tweet
    7. pro 2019.

    Given I've spent many years actually writing many popular C-extensions for Python, please take note of this strong recommendation!

    Poništi
  7. proslijedio/la je Tweet
    3. pro 2019.

    Scikit-learn 0.22 is out! New website, new plotting API, permutation variable importances, support for missing values in GBRT, KNN Imputer, Decision Tree pruning and much more. Highlights: Full changelog:

    Poništi
  8. proslijedio/la je Tweet
    2. pro 2019.

    My talk on Scalable Machine Learning with from PyData NYC is now online: Slides are at

    Poništi
  9. proslijedio/la je Tweet
    21. stu 2019.

    IMHO, technical debt is not discussed enough in the context of scientific methods, especially computational ones. Accumulating complexity over time leads to diminishing returns with super-linear costs. We need to always simplify our scientific pipelines.

    Poništi
  10. proslijedio/la je Tweet

    Time series prediction is clearly a very important problem for . Here is a blogpost and a couple of papers from their presentation at :

    Poništi
  11. proslijedio/la je Tweet

    A way to describe intelligence is that it is the power to produce abstraction. AI in the true sense would be Autonomous Abstraction. Current AI consists of recording abstractions generated by the human mind (via hard-coding rules, training ML models on human-labeled data, etc).

    Prikaži ovu nit
    Poništi
  12. proslijedio/la je Tweet
    23. lis 2019.

    More people should know about xarray. Not everything in life is a 2D table, especially in the natural sciences. Xarray makes N-dimensional SciPy code easy and pretty.

    Poništi
  13. proslijedio/la je Tweet
    1. lis 2019.

    We launched today! 🎈🥳 🚀Streamlit is the fastest way to build custom tools. $ pip install streamlit $ streamlit hello See more:

    Poništi
  14. proslijedio/la je Tweet

    If your classifier is "99% accurate", either you're using the wrong metric (a metric this high is not informative), or you have an overfitting or leakage problem. Metrics are feedback points on the way towards better models. Not trophies to show off. They should be actionable.

    Poništi
  15. proslijedio/la je Tweet
    12. ruj 2019.

    Huh, just hearing about it for the first time, looks handy & convenient: "sktime -- A scikit-learn compatible Python toolbox for learning with time series data"

    Poništi
  16. proslijedio/la je Tweet
    27. kol 2019.

    Thinking more about survival function prediction, and a new Python project, 𝚕𝚒𝚏𝚎𝚕𝚒𝚔𝚎:

    Poništi
  17. proslijedio/la je Tweet
    21. kol 2019.

    opendrop: Apple AirDrop Implementation Written in Python

    Poništi
  18. proslijedio/la je Tweet
    20. kol 2019.

    Excited to share our notebook curriculum for learning visualization! Visual encoding, data transformation, interaction, maps, & more! Into Python? Here's Altair + Jupyter: Prefer JavaScript? See Vega-Lite + :

    Prikaži ovu nit
    Poništi
  19. proslijedio/la je Tweet
    16. kol 2019.

    Speaker diarization—separating speech from different speakers—is critical for joint speech recognition. New research based on a recurrent neural network transducer architecture improves diarization performance by a factor of ~10. Learn how it's done here:

    Poništi
  20. proslijedio/la je Tweet
    15. kol 2019.

    Very excited to announce Snorkel v0.9, the biggest update to our open source framework for programmatically labeling, transforming & structuring training datasets for . We add new core ops, algs, tutorials, and a full redesign of the core lib

    Poništi

Čini se da učitavanje traje već neko vrijeme.

Twitter je možda preopterećen ili ima kratkotrajnih poteškoća u radu. Pokušajte ponovno ili potražite dodatne informacije u odjeljku Status Twittera.

    Možda bi vam se svidjelo i ovo:

    ·