To write the operadic multiplications γ: [r] ⨿ ([m₁] ⨿ ⋯ ⨿ [mᵣ]) → [Σmᵢ], maybe it's good to write elements like (k,r) and (k,mᵢ) to specify which component we're starting in. ⌊05⌋
If X happens to be "2-Segal" then this cooperad is "invertible". This means we can reverse the structure maps (which are bijections), and so our simplicial set is also an operad. ⌊15⌋
-
-
I talked about an example of this before, namely when X is the nerve of a category. More can be found in §3.6 of Dyckerhoff–Kapranov's "Higher Segal Spaces". ⌊16⌋https://twitter.com/solifine/status/1213137923870208000 …
Prikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi
-
Čini se da učitavanje traje već neko vrijeme.
Twitter je možda preopterećen ili ima kratkotrajnih poteškoća u radu. Pokušajte ponovno ili potražite dodatne informacije u odjeljku Status Twittera.