The objects of the simplicial category 𝚫 are [n] = {0 < 1 < ⋯ < n}, for n≥0, and instead of writing Δⁿ for the representable simplicial set hom(-,[n]), let's just write [n]. (Mostly so we can actually write [mᵢ] on twitter!) ⌊03⌋
For 1≤j≤n, the jth "input color" of x∊X(n) is given by the interval inclusion [1] → [n] in 𝚫 that sends 0 to j-1 and 1 to j. ⌊13⌋
-
-
For each simplicial set X, we have produced an X(1)-colored cooperad [in (Set,×,∗)]. ⌊14⌋
Prikaži ovu nit -
If X happens to be "2-Segal" then this cooperad is "invertible". This means we can reverse the structure maps (which are bijections), and so our simplicial set is also an operad. ⌊15⌋
Prikaži ovu nit -
I talked about an example of this before, namely when X is the nerve of a category. More can be found in §3.6 of Dyckerhoff–Kapranov's "Higher Segal Spaces". ⌊16⌋https://twitter.com/solifine/status/1213137923870208000 …
Prikaži ovu nit
Kraj razgovora
Novi razgovor -
Čini se da učitavanje traje već neko vrijeme.
Twitter je možda preopterećen ili ima kratkotrajnih poteškoća u radu. Pokušajte ponovno ili potražite dodatne informacije u odjeljku Status Twittera.