Every simplicial set X is a (nonsymmetric) cooperad, whose n-ary cooperations are precisely the n-simplices of X. Why? Where do the cooperadic cocompositions come from? ⌊01⌋
Are you satisfied that the standard simplices form an operad? If so, let X be a simplicial set. We know that hom(A⨿B,X) = hom(A,X)×hom(B,X) and X(n) = hom(Δⁿ,X). (here, hom means "simplicial set morphisms", while earlier it meant morphisms in 𝚫) ⌊09⌋
-
-
It follows that the maps γ from above give functions X(Σmᵢ) → X(r)×(X(m₁)×⋯×X(mᵣ)) and the unique map ∅ → [1] gives X(1) → hom(∅,X) = ∗. ⌊10⌋
Prikaži ovu nit -
Because the maps γ were not injective, the cocomposition map X(Σmᵢ) → X(r)×(X(m₁)×⋯×X(mᵣ)) lands in a smaller subset. ⌊11⌋
Prikaži ovu nit -
More specifically, this is an X(1)-colored cooperad. The "output color" of an element x ∊ X(n) is found using the endpoint preserving function [1] → [n] in 𝚫 (that is, 0↦0, 1↦n). ⌊12⌋
Prikaži ovu nit -
For 1≤j≤n, the jth "input color" of x∊X(n) is given by the interval inclusion [1] → [n] in 𝚫 that sends 0 to j-1 and 1 to j. ⌊13⌋
Prikaži ovu nit -
For each simplicial set X, we have produced an X(1)-colored cooperad [in (Set,×,∗)]. ⌊14⌋
Prikaži ovu nit -
If X happens to be "2-Segal" then this cooperad is "invertible". This means we can reverse the structure maps (which are bijections), and so our simplicial set is also an operad. ⌊15⌋
Prikaži ovu nit -
I talked about an example of this before, namely when X is the nerve of a category. More can be found in §3.6 of Dyckerhoff–Kapranov's "Higher Segal Spaces". ⌊16⌋https://twitter.com/solifine/status/1213137923870208000 …
Prikaži ovu nit
Kraj razgovora
Novi razgovor -
Čini se da učitavanje traje već neko vrijeme.
Twitter je možda preopterećen ili ima kratkotrajnih poteškoća u radu. Pokušajte ponovno ili potražite dodatne informacije u odjeljku Status Twittera.