Tweetovi
- Tweetovi, trenutna stranica.
- Tweetovi i odgovori
- Medijski sadržaj
Blokirali ste korisnika/cu @shoyer
Jeste li sigurni da želite vidjeti te tweetove? Time nećete deblokirati korisnika/cu @shoyer
-
Prikvačeni tweet
I'm happy to share a new paper, with
@jaschasd and@samgreydanus: "Neural reparameterization improves structural optimization" https://arxiv.org/abs/1909.04240 We use neural nets to parameterize inputs of a finite elements method, and differentiable through the whole thing:pic.twitter.com/JYRTiNwYsh
Prikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Stephan Hoyer proslijedio/la je Tweet
xarray 0.15.0 is out! with binderized examples! https://xarray.pydata.org/en/stable/examples/weather-data.html … Full changelog: https://xarray.pydata.org/en/stable/whats-new.html … Thanks to all 32 (!) contributors to this releasepic.twitter.com/WtuDXm48hf
Hvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Stephan Hoyer proslijedio/la je Tweet
Open source is more than just a price tag. It's a community and culture based on collaboration and open exchange of ideas.https://twitter.com/sRyanGooch/status/1222908632712409089 …
Hvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Stephan Hoyer proslijedio/la je Tweet
Tensor / array library developers! Please save the date for the Tensor Developer Summit, March 19–20,
@UCBIDS. Registration opens soon.https://xd-con.org/tensor-2020/Hvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Anyone know what's up with
@github's dependency tracking? Until recently we saw a long list of dependents for@xarray_dev, but now it's entirely empty? https://github.com/pydata/xarray/network/dependencies …Hvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Stephan Hoyer proslijedio/la je Tweet
Interesting analysis suggesting that the reason for the disappointing performance of many modern CNN architectures is that their depthwise convolutions are memory-bound. https://twitter.com/timothy_lkh_/status/1220686583889719296 …pic.twitter.com/nXafyOseH3
Hvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Stephan Hoyer proslijedio/la je Tweet
Have you ever wondered what will be the ML frameworks of the '20s? In this essay, I examine the directions AI research might take and the requirements they impose, concluding with an overview of what I believe to be two strong candidates: JAX and S4TF.http://inoryy.com/post/next-gen-ml-tools/ …
Hvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Stephan Hoyer proslijedio/la je Tweet
1/5 In one my
@GoogleAI Residency projects we used CNNs to reparameterize structural optimization (w/@shoyer@jaschasd). Our approach worked best on 99/116 structures. I just finished a blog post with GIFs, visualizations, and links to code + Colab. https://greydanus.github.io/2019/12/15/neural-reparam/ …pic.twitter.com/3zwSJyxxtfPrikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Flax is worth taking a look at if you're interested in training neural nets in JAX. It's definitely a big step up from Stax!https://twitter.com/hardmaru/status/1219088493583880192 …
Hvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Stephan Hoyer proslijedio/la je Tweet
I summarized some of my thoughts on grant-based funding of open source software in a new blog post: Don't fund software that doesn't exit. https://peekaboo-vision.blogspot.com/2020/01/dont-fund-software-that-doesnt-exist.html … cc
@cziscience@epistemographer@jameshowison@NSF_CISE@ralfgommers@fperez_orgHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
To give a little more context: a likely focus would be using deep learning inside numerical methods for solving large scale PDE problems, particularly for computational fluid dynamics.
Prikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Stephan Hoyer proslijedio/la je Tweet
By the way, if you're excited about working on AI+scientific computing at Google, please reach out! I am looking to hire a PhD student intern this summer. We also have some great programs for visiting faculty & postdocs, as well as the AI residency program.
Prikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
By the way, if you're excited about working on AI+scientific computing at Google, please reach out! I am looking to hire a PhD student intern this summer. We also have some great programs for visiting faculty & postdocs, as well as the AI residency program.
Prikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Stephan Hoyer proslijedio/la je Tweet
Couldn’t help myself from re-running my benchmarks on TPU: https://github.com/dionhaefner/pyhpc-benchmarks/blob/master/results/colab.md … (just using one chip though)
Hvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
More broadly: I think the new paradigm of deep learning + auto-diff + accelerators has the potential to transform scientific computing. JAX is a decent platform for this already, and we're looking forward to making it even better!
Prikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Also note that the simulation currently isn't differentiable -- but that would be straightforward to add with the adjoint method. (You would not want to use naive back-propagation, because you would quickly run out of memory.)
Prikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Performance is currently roughly comparable to running on GPUs at the same cost point, but note that we aren't making use of the TPU's matrix multiplication core at all currently. That leaves a lot of performance on the table, e.g., for hybrid deep learning models!
Prikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
JAX now supports Google Cloud TPUs! https://github.com/google/jax/tree/master/cloud_tpu_colabs … I contributed this example, solving a 2D wave equation with a spatially partitioned grid. The code is remarkably simple and all in pure Python!pic.twitter.com/h5NhXkgTm3
Prikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Stephan Hoyer proslijedio/la je Tweet
A new blog post which describes 5 different ways to take advantage of the new
@pangeo_data /@LamontEarth CMIP6 data archive in@googlecloud.https://medium.com/pangeo/cmip6-in-the-cloud-five-ways-96b177abe396 …Prikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Stephan Hoyer proslijedio/la je Tweet
Wow, JAX is amazing. Thanks for introducing me
@shoyer. It's essentially numpy on steroids: parallel functions, GPU support, autodiff, JIT compilation, deep learning.#NeurIPS2019 https://github.com/google/jax pic.twitter.com/aT3rFI1LO4
Hvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Stephan Hoyer proslijedio/la je Tweet
Very compelling talk by
@sschoenholz on implementing molecular dynamics with Jax. I think the general strategy of upgrading our simulation to include autodiff (and probprog) will be a major theme of the next 5 years. Those points apply equally well to HEP#NeurIPS2019#ML4PS2019pic.twitter.com/bG6WVhMfbJ
Hvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi
Čini se da učitavanje traje već neko vrijeme.
Twitter je možda preopterećen ili ima kratkotrajnih poteškoća u radu. Pokušajte ponovno ili potražite dodatne informacije u odjeljku Status Twittera.