Tweetovi
- Tweetovi, trenutna stranica.
- Tweetovi i odgovori
Blokirali ste korisnika/cu @shivamsaboo17
Jeste li sigurni da želite vidjeti te tweetove? Time nećete deblokirati korisnika/cu @shivamsaboo17
-
Shivam Saboo proslijedio/la je Tweet
"How to do machine learning efficiently". There's so much to love about this wonderful article. https://medium.com/hackernoon/doing-machine-learning-efficiently-8ba9d9bc679d …pic.twitter.com/n6otKKP3gJ
Hvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Shivam Saboo proslijedio/la je Tweet
An Opinionated Guide to ML Research: “To make breakthroughs with idea-driven research, you need to develop an exceptionally deep understanding of your subject, and a perspective that diverges from the rest of the community—some can do it, but it’s hard.” http://joschu.net/blog/opinionated-guide-ml-research.html …pic.twitter.com/fyO6cyr9im
Prikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Shivam Saboo proslijedio/la je Tweet
Machine Learning Summer School 2020 is in Tuebingen, Germany! Please apply. Deadline: 11 Feb 2020. http://mlss.tuebingen.mpg.de/2020
Hvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Shivam Saboo proslijedio/la je Tweet
Teaching Deep Unsupervised Learning (2nd edition) at
@UCBerkeley this semester. You can follow along here: https://sites.google.com/view/berkeley-cs294-158-sp20/home … Instructor Team:@peterxichen ,@Aravind7694 ,@hojonathanho , Wilson Yan, Alex Li,@pabbeel YouTube, PDF, and Google Slides for ease of re-usepic.twitter.com/VTvffsEjHf
Hvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Shivam Saboo proslijedio/la je Tweet
Finally, Differentiable Physics is Here!
Full video (ours): https://youtu.be/T7w7QuYa4SQ
Source paper: https://github.com/yuanming-hu/difftaichi …
#deeplearning#ai#machinelearning#science#twominutepaperspic.twitter.com/yFeUoXJokPPrikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Shivam Saboo proslijedio/la je Tweet
Kornia v0.2.0 is out ! We have introduced a new data augmentation module with strong GPU support, extended the set of color conversion algorithms, supporting GPU CI tests with
@PyTorch v1.4.0, and much more. Happy coding !pic.twitter.com/hizVSTL7CvPrikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Shivam Saboo proslijedio/la je Tweet
TRADI: Tracking deep neural network weight distributions -- work with G. Franchi https://arxiv.org/abs/1912.11316 We’re proposing a cheap method for getting ensembles of networks from a single network training 1/pic.twitter.com/J31E9aaiKL
Prikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Shivam Saboo proslijedio/la je Tweet
Now it works. Let's spatially explore the 2D images! Thanks for tips,
@jonathanfly! And Special Kudos to@simon_niklaus - 3D Ken Burns model is his great work! Here is what happens if you exaggerate this model. And it's amazing.pic.twitter.com/1VLZ13WCc1Prikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Shivam Saboo proslijedio/la je Tweet
Excited to share PCGrad, a super simple & effective method for multi-task learning & multi-task RL: project conflicting gradients On Meta-World MT50, PCGrad can solve *2x* more tasks than prior methods https://arxiv.org/abs/2001.06782 w/ Tianhe Yu, S Kumar, Gupta,
@svlevine,@hausman_kpic.twitter.com/uTeUhULUTA
Hvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Shivam Saboo proslijedio/la je Tweet
Visualizing the Impact of Feature Attribution Baselines -- A new Distill article by Pascal Sturmfels, Scott Lundberg, and Su-In Lee.https://distill.pub/2020/attribution-baselines/ …
Hvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Shivam Saboo proslijedio/la je Tweet
We are organizing a workshop on Causal learning for Decision Making at
@iclr_conf along with@rosemary_ke@DeepSpiker@theophaneweber, Jovana Mitrovic,@janexwang, Stefan and@csilviavr. https://sites.google.com/view/causal-learning-icrl2020/home …@MILAMontreal Consider submitting your work!Hvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Shivam Saboo proslijedio/la je Tweet
I often meet research scientists interested in open-sourcing their code/research and asking for advice. Here is a thread for you. First: why should you open-source models along with your paper? Because science is a virtuous circle of knowledge sharing not a zero-sum competitionpic.twitter.com/x16jgKmLFr
Prikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Shivam Saboo proslijedio/la je Tweet
Seeking volunteers for the mentorship program at our
#ICLR2020 workshop! Those with a climate change and/or machine learning background are encouraged to apply to mentor submissions from Jan 15-Feb 4. Apply to be a mentor (or mentee) at:https://www.climatechange.ai/ICLR2020_workshop#submission-mentorship-program …Hvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Shivam Saboo proslijedio/la je Tweet
Maximizing acquisition functions in Bayesian optimization is hard. However, they have some nice properties (e.g., reparametrizable, submodular), which can be useful (also in the parallel setting) as discussed by James Wilson https://papers.nips.cc/paper/8194-maximizing-acquisition-functions-for-bayesian-optimization …
@FrankRHutterpic.twitter.com/LgyOzBlnqn
Prikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Shivam Saboo proslijedio/la je Tweet
***What were the most interesting, scientifically insightful, and coherent papers that you read in 2019??*** Rules: 1) No restriction on methodology or aim (theoretical, experimental, & applications papers welcome). 2) Do not post your own papers.
Prikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Shivam Saboo proslijedio/la je Tweet
Perhaps 2019 was the yr neural architectures died. Architecture papers still form plurality of submissions (bc its easy) but most *interesting* papers are agnostic. 2012-2018 = "how do we learn fn approx. for given p(x,y)?" 2019-???? = "we have good fn approx., now what?"
Hvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Shivam Saboo proslijedio/la je Tweet
What companies look for when hiring 1960: People who know many things 1990: People who are good at learning new things 2020: People who are good at learning how to learn new things
Hvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Shivam Saboo proslijedio/la je Tweet
This is an important story to read for anyone in DL academia https://twitter.com/andreas_madsen/status/1211329218619092993 …pic.twitter.com/JrQMb2fqfw
Hvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Shivam Saboo proslijedio/la je Tweet
It would help the discussion if everyone first 1. reads a causal inference book, eg https://www.oapen.org/download?type=document&docid=1004045 …, 2. watches a deep learning course emphasising modularity, compositionality and automatic differentiation, 3. implements the CI book examples in eg
@PyTorchhttps://twitter.com/yudapearl/status/1210874793349664769 …Hvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Shivam Saboo proslijedio/la je Tweet
The 1997 LSTM paper by Hochreiter & Schmidhuber has become the most cited deep learning research paper of the 20th centuryhttps://www.reddit.com/r/MachineLearning/comments/eg8mmn/d_the_1997_lstm_paper_by_hochreiter_schmidhuber/ …
Hvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi
Čini se da učitavanje traje već neko vrijeme.
Twitter je možda preopterećen ili ima kratkotrajnih poteškoća u radu. Pokušajte ponovno ili potražite dodatne informacije u odjeljku Status Twittera.