Tweetovi
- Tweetovi, trenutna stranica.
- Tweetovi i odgovori
- Medijski sadržaj
Blokirali ste korisnika/cu @ropeharz
Jeste li sigurni da želite vidjeti te tweetove? Time nećete deblokirati korisnika/cu @ropeharz
-
Prikvačeni tweet
This paper has quite a history. When Martin started his PhD in 2015, and said he'd be interested in Bayesian structure learning in SPNs, my reaction was: interesting -- and challenging
.
But here we are, just a few years later
, and accepted at #NeurIPS2019!https://twitter.com/martin_trapp/status/1133325014932119552 …Prikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Robert Peharz proslijedio/la je Tweet
a solution:
#probabilistic#circuits (PCs) which are the#deep version of mixture models! PCs let you 1) still marginalize in poly time 2) compactly encode exponentially large mixtures stay tuned for a tutorial on#circuits with YooJung Choi@ropeharz@guyvdb at@RealAAAI 2020!pic.twitter.com/7XaErKz7ND
Prikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Hey EU, something's different about you today... lost weight?
Hvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Tired of doing grad student descent? Try some principled post-doc sample correction!
https://twitter.com/liam_hodg/status/1222041839915560961 …
Hvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Robert Peharz proslijedio/la je Tweet
Two new University Lectureships in the Department of Engineering of the University of Cambridge, in the broad area of Machine Learning and/or Computer Vision. Application deadline 1 March 2020. http://www.jobs.cam.ac.uk/job/23622/
Hvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
I can recommend this book (~200 p.), which I red during my PhD time, and which fixes the biggest knowledge gaps:https://www.goodreads.com/book/show/1896580.A_First_Look_at_Rigorous_Probability_Theory …
Prikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Most computer scientist don't get a proper education in measure theory/rigorous probability theory. However, if you are working on probabilistic machine learning/applied statistics, you're missing out!
Prikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Robert Peharz proslijedio/la je Tweet
Researchers had had it with
#Fortran and was willing to take a 3x performance hit going with a nice productive language like#JuliaLang. To their surprise, they did not get a performance hit, but a 3x performance BOOST! Julia rocks!https://www.hpcwire.com/2020/01/14/julia-programmings-dramatic-rise-in-hpc-and-elsewhere/ …Prikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Robert Peharz proslijedio/la je Tweet
This review on normalizing flows is excellent. It's full of clear writing, precise claims, and useful connections.https://twitter.com/gpapamak/status/1202935540175310854 …
Hvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Robert Peharz proslijedio/la je Tweet
You know what I love? Machine learning and applied science researchers offering explanations of how Bayesian inference works whose fallaciousness is exceeded only by the confidence in which they are presented.
Hvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Robert Peharz proslijedio/la je Tweet
Turing.jl is the
#JuliaLang killer package for probabilistic programming!https://juliacomputing.com/killer-packages/ …Hvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Robert Peharz proslijedio/la je Tweet
For anyone doing computational* work involving measure theory, what capabilities would you look for in a "measures" software library? * Turing machines are cool, but here I mean "computed using an actual physical computer"
Prikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
I guess the best feature is that it is a well-defined process model, inheriting tractable inference from its "parents", Tractable Probabilistic Circuits and Gaussian Processes. Work with
@martin_trapp, Franz Pernkopf, and Carl Rasmussen.Prikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Super happy that our paper on Deep Structured Mixtures of Gaussian Processes was accepted at AISTATS! I truly think that this line of work adds some nice new dimensions to GP-style of models.https://twitter.com/martin_trapp/status/1214488775059005440 …
Prikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Robert Peharz proslijedio/la je Tweet
Now I have to drop everything and read this: [1912.13170] Schrödinger Bridge Samplers by Espen Bernton, Jeremy Heng, Arnaud Doucet
@ArnaudDoucet1, Pierre E. Jacob @PierreEJacob http://search.arxiv.org:8081/paper.jsp?r=1912.13170&qid=1578280543978multi_nCnN_-1282084631&qs=Raginsky&byDate=1 …Hvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Robert Peharz proslijedio/la je Tweet
Despite Deep
#ReinforcementLearning's popularity, there are precious few good intro tutorials! This is a really nice one. It combines: - toy implementation - math concepts - intuitive explanations#100DaysOfMLCode#100DaysOfCodehttps://medium.com/@dhruvp/how-to-write-a-neural-network-to-play-pong-from-scratch-956b57d4f6e0 …Hvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Robert Peharz proslijedio/la je Tweet
For the morning crowd: there's plenty of new stuff by me to keep you busy in January! Introduction to Probabilistic Computation: https://betanalpha.github.io/assets/case_studies/probabilistic_computation.html … Markov chain Monte Carlo: https://betanalpha.github.io/assets/case_studies/markov_chain_monte_carlo.html …
Prikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Robert Peharz proslijedio/la je Tweet
I think the ability to express a lot structure with network architectures has been one of the driving forces behind the success of deep learning based approaches. If we can add even more structure with clever priors/interactions of priors/architectures, that would be a huge win.
Hvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Robert Peharz proslijedio/la je Tweet
The phrase "the right scientific model" should never be taken seriously. How could we ever.know that we've found it?https://twitter.com/ylecun/status/1209991333642944512 …
Hvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Robert Peharz proslijedio/la je Tweet
Now that everyone is again into logic/symbols/reasoning vs deep/learning, I'd like to repost my C&T talk:
https://www.youtube.com/watch?v=mQMxqecxGhk …
I discuss:
- some history of this false dilemma in AI
- logic and pure learning are *both* brittle
- probabilistic world models as middle groundPrikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Robert Peharz proslijedio/la je Tweet
Here are some notes I wrote up on her 2013 Shannon Lecture (back in the days when I had the time and the mojo to maintain a blog): https://infostructuralist.wordpress.com/2013/07/29/isit-2013-two-plenaries-on-concentration-of-measure/ … 3/3
Prikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi
Čini se da učitavanje traje već neko vrijeme.
Twitter je možda preopterećen ili ima kratkotrajnih poteškoća u radu. Pokušajte ponovno ili potražite dodatne informacije u odjeljku Status Twittera.