Tweetovi
- Tweetovi, trenutna stranica.
- Tweetovi i odgovori
- Medijski sadržaj
Blokirali ste korisnika/cu @quocleix
Jeste li sigurni da želite vidjeti te tweetove? Time nećete deblokirati korisnika/cu @quocleix
-
Quoc Le proslijedio/la je Tweet
About
#MeenaBot data (asked by@GaryMarcus & others): 1. Only one occurrence of "Hayvard" in the training data. 2. The sentence that contains "Hayvard" has meaning similar to "Guess what, I obtained my bachelor from Hayvard." 3. No occurrence of "cow*" in the same conversation.https://twitter.com/quocleix/status/1222571742746443776 …
Hvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Quoc Le proslijedio/la je Tweet
Enabling people to converse with chatbots about anything has been a passion of a lifetime for me, and I'm sure of others as well. So I'm very thankful to be able to finally share our results with you all. Hopefully, this will help inform efforts in the area. (1/4)https://twitter.com/lmthang/status/1222234237262159872 …
Prikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Quoc Le proslijedio/la je Tweet
This video explains
@GoogleAI 's amazing new Meena chatbot! An Evolved Transformer with 2.6B parameters on 341 GB / 40B words of conversation data to achieves remarkable chatbot performance! "Horses go to Hayvard!" https://youtu.be/STrrlLG15OY#100DaysOfMLCodeHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
I had another conversation with Meena just now. It's not as funny and I don't understand the first answer. But the replies to the next two questions are quite funny.pic.twitter.com/lpOZpsvDck
Prikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
My favorite conversation is below. The Hayvard pun was funny but I totally missed the steer joke at the end until it was pointed out today by
@Blonkhartpic.twitter.com/AmTobwf9A0
Prikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
You can find some sample conversations with the bot here:https://github.com/google-research/google-research/blob/master/meena/meena.txt …
Prikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
New paper: Towards a Human-like Open-Domain Chatbot. Key takeaways: 1. "Perplexity is all a chatbot needs" ;) 2. We're getting closer to a high-quality chatbot that can chat about anything Paper: https://arxiv.org/abs/2001.09977 Blog: https://ai.googleblog.com/2020/01/towards-conversational-agent-that-can.html …pic.twitter.com/5SOBa58qx3
Prikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Quoc Le proslijedio/la je Tweet
This video explains AdvProp from
@GoogleAI! This technique leverages Adversarial Examples for ImageNet classification by using separate Batch Normalization layers for clean and adversarial mini-batches. https://youtu.be/KTCztkNJm50#100DaysOfMLCodeHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Quoc Le proslijedio/la je Tweet
Some nice case studies about how
@GCPcloud's AutoML products can help tackle real-world problems in visual inspection across a number of different manufacturing domains, being used by companies like Global Foundries and Siemens.https://cloud.google.com/blog/products/ai-machine-learning/ai-and-machine-learning-improve-manufacturing-visual-inspection-process …Hvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Pretrained checkpoints in Pytorch: https://github.com/rwightman/gen-efficientnet-pytorch … h/t to
@wightmanrPrikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
AdvProp improves accuracy for a wide range of image models, from small to large. But the improvement seems bigger when the model is larger.pic.twitter.com/13scFaoQzB
Prikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
As a data augmentation method, adversarial examples are more general than other image processing techniques. So I expect AdvProp to be useful everywhere (language, structured data etc.), not just image recognition.
Prikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Many of us tried to use adversarial examples as data augmentation and observed a drop in accuracy. And it seems that simply using two BatchNorms overcomes this mysterious drop in accuracy.
Prikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
AdvProp: One weird trick to use adversarial examples to reduce overfitting. Key idea is to use two BatchNorms, one for normal examples and another one for adversarial examples. Significant gains on ImageNet and other test sets.https://twitter.com/tanmingxing/status/1199046124348116993 …
Prikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Hvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi
-
Hvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi
-
EfficientDet: a new family of efficient object detectors. It is based on EfficientNet, and many times more efficient than state of art models. Link: https://arxiv.org/abs/1911.09070 Code: coming soonpic.twitter.com/2KYabAnpLL
Prikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
RandAugment was one of the secret sources behind Noisy Student that I tweeted last week. Code for RandAugment is now opensourced.https://twitter.com/barret_zoph/status/1196621040064974849 …
Hvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
I also highly recommend this nice video that explains the paper very well:https://www.youtube.com/watch?v=Y8YaU9mv_us …
Prikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Method is also super simple: 1) Train a classifier on ImageNet 2) Infer labels on a much larger unlabeled dataset 3) Train a larger classifier on the combined set 4) Iterate the process, adding noise
Prikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi
Čini se da učitavanje traje već neko vrijeme.
Twitter je možda preopterećen ili ima kratkotrajnih poteškoća u radu. Pokušajte ponovno ili potražite dodatne informacije u odjeljku Status Twittera.