The largest Roman numeral which will fit in a Tweet is an "M" plus 279 overbars, which expresses exactly 10^840, as I shall now demonstrate
-
Show this thread
-
M̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
3 replies 12 retweets 39 likesShow this thread -
This is actually significantly larger than the largest Arabic numeral which will fit in a Tweet, which is 280 "9" digits in a row, expressing 10^280 - 1
1 reply 3 retweets 20 likesShow this thread -
However, plenty of Roman numerals for smaller values, such as 10^840 - 1, won't fit at all
3 replies 2 retweets 20 likesShow this thread -
The smallest number whose Roman numeral won't fit in a Tweet is, I believe, 78,888,888,888,887,888,888. Everything up to 78,888,888,888,887,888,887 fits (see next Tweet)
1 reply 7 retweets 14 likesShow this thread -
L̅̅̅̅̅̅X̅̅̅̅̅̅X̅̅̅̅̅̅V̅̅̅̅̅̅M̅̅̅̅̅M̅̅̅̅̅M̅̅̅̅̅D̅̅̅̅̅C̅̅̅̅̅C̅̅̅̅̅C̅̅̅̅̅L̅̅̅̅̅X̅̅̅̅̅X̅̅̅̅̅X̅̅̅̅̅V̅̅̅̅̅M̅̅̅̅M̅̅̅̅M̅̅̅̅D̅̅̅̅C̅̅̅̅C̅̅̅̅C̅̅̅̅L̅̅̅̅X̅̅̅̅X̅̅̅̅X̅̅̅̅V̅̅̅̅M̅̅̅M̅̅̅M̅̅̅D̅̅̅C̅̅̅C̅̅̅C̅̅̅L̅̅̅X̅̅̅X̅̅̅X̅̅̅V̅̅̅M̅̅M̅̅M̅̅D̅̅C̅̅C̅̅C̅̅L̅̅X̅̅X̅̅X̅̅V̅̅M̅M̅D̅C̅C̅C̅L̅X̅X̅X̅V̅MMMDCCCLXXXVII
1 reply 2 retweets 18 likesShow this thread -
Here is some handy code for handling very large Roman numeralshttps://github.com/qntm/big-roman
1 reply 1 retweet 6 likesShow this thread -
Ah! I think my earlier calculation was wrong. The smallest number which has a 281-character Roman numeral is actually 38,888,888,888,887,888,888, not 78,888,888,888,887,888,888. So the answer to the question is 38,888,888,888,887,888,887 (see next Tweet):
1 reply 2 retweets 10 likesShow this thread -
X̅̅̅̅̅̅X̅̅̅̅̅̅X̅̅̅̅̅̅V̅̅̅̅̅̅M̅̅̅̅̅M̅̅̅̅̅M̅̅̅̅̅D̅̅̅̅̅C̅̅̅̅̅C̅̅̅̅̅C̅̅̅̅̅L̅̅̅̅̅X̅̅̅̅̅X̅̅̅̅̅X̅̅̅̅̅V̅̅̅̅̅M̅̅̅̅M̅̅̅̅M̅̅̅̅D̅̅̅̅C̅̅̅̅C̅̅̅̅C̅̅̅̅L̅̅̅̅X̅̅̅̅X̅̅̅̅X̅̅̅̅V̅̅̅̅M̅̅̅M̅̅̅M̅̅̅D̅̅̅C̅̅̅C̅̅̅C̅̅̅L̅̅̅X̅̅̅X̅̅̅X̅̅̅V̅̅̅M̅̅M̅̅M̅̅D̅̅C̅̅C̅̅C̅̅L̅̅X̅̅X̅̅X̅̅V̅̅M̅M̅D̅C̅C̅C̅L̅X̅X̅X̅V̅MMMDCCCLXXXVII
1 reply 4 retweets 12 likesShow this thread -
Here is the code I used to figure this out:https://gist.github.com/qntm/e0daf631d6983d97647ebae841f6aaf1 …
1 reply 1 retweet 6 likesShow this thread
I was supposed to be writing today
-
-
Replying to @qntm
g₆₄↑(g₆₄↑(g₆₄↑(g₆₄↑(g₆₄↑(g₆₄↑(g₆₄↑(g₆₄↑(g₆₄↑(g₆₄↑(g₆₄↑(g₆₄↑(g₆₄↑(g₆₄↑(g₆₄↑(g₆₄↑(g₆₄↑(g₆₄)↑g₆₄)↑g₆₄)↑g₆₄)↑g₆₄)↑g₆₄)↑g₆₄)↑g₆₄)↑g₆₄)↑g₆₄)↑g₆₄)↑g₆₄)↑g₆₄)↑g₆₄)↑g₆₄)↑g₆₄)↑g₆₄)↑g₆₄
1 reply 0 retweets 1 like -
Replying to @FakeUnicode @qntm
given that the result is, like all gₙ, an extremely large power of 3, I wonder if this expression can be simplified any. Eh, even if it can, you probably would need nested subscripts.
1 reply 0 retweets 0 likes - 3 more replies
New conversation -
Loading seems to be taking a while.
Twitter may be over capacity or experiencing a momentary hiccup. Try again or visit Twitter Status for more information.