Tweetovi

Blokirali ste korisnika/cu @PyTorch

Jeste li sigurni da želite vidjeti te tweetove? Time nećete deblokirati korisnika/cu @PyTorch

  1. 30. sij

    Welcome OpenAI to the PyTorch community!

    Poništi
  2. proslijedio/la je Tweet
    28. sij

    I'm happy to announce our latest work on self-supervised learning for . PASE+ is based on a multi-task approach useful for recognition. It will be presented at . paper: code: @Mila

    Prikaži ovu nit
    Poništi
  3. 28. sij

    Check out a fresh take on frontends from the creators of

    Poništi
  4. proslijedio/la je Tweet
    28. sij

    We are proud to announce the release of Catalyst v20.01.3, DL/RL framework for - core architecture redesign - improved registry – Albumentations and SMP support - MultiPhaseRunner and GanRunner Working hard for Catalyst.RL 2.0 🚀

    Poništi
  5. proslijedio/la je Tweet
    27. sij

    Kornia v0.2.0 is out ! We have introduced a new data augmentation module with strong GPU support, extended the set of color conversion algorithms, supporting GPU CI tests with v1.4.0, and much more. Happy coding !

    Prikaži ovu nit
    Poništi
  6. 26. sij

    Thank You for posting 10,000 replies on the forums and helping many hundreds of us!

    Poništi
  7. proslijedio/la je Tweet
    22. sij

    code showing the generic learning setup and reproducing simple experiments is now available! Code: Project Page: Paper:

    Poništi
  8. proslijedio/la je Tweet
    22. sij

    OpenMined + collaborating to advance open source software development. Learn about these talented teams on our blog: Many opportunities ahead. Join our Slack community to find out more!

    Poništi
  9. proslijedio/la je Tweet
    17. sij

    Pyro 1.2 release adds poutine.reparam to rewrite models to improve geometry via: - neural transport - discrete cosine transform - auxiliary variable methods for Levy Stable distributions - conditional Gaussian HMMs - decentering - transform unwrapping

    Poništi
  10. proslijedio/la je Tweet
    17. sij

    To make my research more reproducible, extensible and comparable to that of others & out of need to homogenize the language we use to express nn pruning methods, I contributed `nn.utils.prune` to 1.4 (see highlights ) Try it out & build on it! 🔥

    Poništi
  11. 16. sij

    torchtext v0.5: improved data API, unsupervised text tokenization - bindings for SentencePiece - New: enwiki9, revisions to PennTreebank, WikiText103, WikiText2, IMDb (looking for feedback) Release Notes:

    Poništi
  12. 16. sij

    torchaudio v0.4: more transforms, datasets, backend support - LibriSpeech and Common Voice loaders - Filters (biquad), batched / jittable transforms (MFCC, gain, dither), more augmentation - interactive speech recognition demo with voice detection

    Poništi
  13. 16. sij

    torchvision v0.5: quantization, production - ResNets, MobileNet, ShuffleNet, GoogleNet and InceptionV3 now have quantized counterparts with pre-trained models, scripts for quantization-aware training. - All models are TorchScript-ready and ONNX-ready

    Poništi
  14. 15. sij

    first release for Python 3.8: binaries for the entire matrix of Python 3.8 {pytorch, torchvision, torchaudio} configurations will be live by Jan 23rd. Some configurations are live already

    Prikaži ovu nit
    Poništi
  15. 15. sij

    v1.4: customizable mobile builds, Distributed Model Parallelism via experimental RPC API, Java Bindings, Chaining LRSchedulers Summary: Release Notes: Last release for Python 2 (bye bye!)

    Prikaži ovu nit
    Poništi
  16. proslijedio/la je Tweet
    15. sij

    PyTorch Metric Learning now available on Anaconda! Installation: "conda install pytorch-metric-learning -c metric-learning" View more details here:

    Poništi
  17. proslijedio/la je Tweet
    14. sij

    [News] Preferred Networks releases Optuna v1.0, the first major version of the open-source hyperparameter optimization framework for machine learning. Optimize your optimization.

    Poništi
  18. 14. sij

    Learn how to automate most of the infrastructure work required to deploy PyTorch models in production using Cortex, an open source tool for deploying models as APIs on AWS.

    Poništi
  19. proslijedio/la je Tweet
    13. sij

    I published a new article on the blog: Active Transfer Learning with PyTorch. Read about adapting Machine learning models with the knowledge that some data points will later get correct human labels, even if the model doesn't yet know the labels:

    Prikaži ovu nit
    Poništi
  20. proslijedio/la je Tweet
    10. sij

    Norse exploits the advantages of bio-inspired neural components, that are sparse and event-driven, a fundamental difference from artificial - based on

    Poništi

Čini se da učitavanje traje već neko vrijeme.

Twitter je možda preopterećen ili ima kratkotrajnih poteškoća u radu. Pokušajte ponovno ili potražite dodatne informacije u odjeljku Status Twittera.

    Možda bi vam se svidjelo i ovo:

    ·