Tweetovi
- Tweetovi, trenutna stranica.
- Tweetovi i odgovori
- Medijski sadržaj
Blokirali ste korisnika/cu @psermanet
Jeste li sigurni da želite vidjeti te tweetove? Time nećete deblokirati korisnika/cu @psermanet
-
Prikvačeni tweet
Give a robot a label and you feed it for a second; teach a robot to label and you feed it for a lifetime.
Hvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Pierre Sermanet proslijedio/la je Tweet
Self-supervised learning opens up a huge opportunity for better utilizing unlabelled data while learning in a supervised learning manner. My latest post covers many interesting ideas of self-supervised learning tasks on images, videos & control problems:https://lilianweng.github.io/lil-log/2019/11/10/self-supervised-learning.html …Hvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Pierre Sermanet proslijedio/la je Tweet
We've open sourced the first playroom from the learning from play project (http://learning-from-play.github.io ). Check out https://github.com/google-research/google-research/tree/master/playrooms …! Many thanks to Michael Wu,
@Vikashplus.pic.twitter.com/1tp2JMIVOO
Hvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
We present this paper today at the LUV and DeepVision workshops at
#CVPR2019. Paper: http://online-objects.github.io Authors:@_pirk_, Mohi Khansari, Yunfei Bai,@coreylynch,@psermanetPrikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
One caveat is that we don’t actually train online (yet), we just show what’s possible if you did. But training on the fly is not even necessary in the case of a robot deployed in a new home, it can spend its first few days looking around, train itself overnight and overfit to it.
Prikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Our model recovers object attributes, colors, shapes and classes entirely from scratch, without any labels, as shown in the nearest neighbors here (ordered left to right by embedding distance to the leftmost object).pic.twitter.com/S4IDAins2C
Prikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Our robot collects its own data, trains itself on it with our self-supervised objective using contrastive learning, then it can point to similar never-seen-before objects to the one in front of it, demonstrating generalization of object attributes.pic.twitter.com/ufOMpjawcb
Prikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Self-supervision allows you to train on your test data, so it’s pretty much guaranteed to do better than a supervised model trained offline. In this video our model converges to ~2% identification error after 160s while the offline baseline trained on ImageNet is stuck at ~50%.pic.twitter.com/YEDBB4ir2m
Prikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
A major benefit of self-supervision is we can truly scale and adapt on the fly. It could be 10% behind supervised ImageNet, it would still do better in real life. We show in http://online-objects.github.io that the longer our model looks at objects, the better it understands them.pic.twitter.com/fqi3hJCYIk
Prikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Hvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi
-
Hvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi
-
Hvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi
-
Come hear how to train the Cake at our workshop on Self-Supervised Learning today at ICML: https://sites.google.com/corp/view/self-supervised-icml2019 … Lineup: Jacob Devlin, Alison Gopnik,
@coreylynch,@DanHendrycks,@chelseabfinn,@ylecun,@__kolesnikov__, Olivier Henaff A Zisserman, Abhinav Gupta, Alyosha Efros.pic.twitter.com/ybnXybBpWl
Prikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Pierre Sermanet proslijedio/la je Tweet
I Now call it "self-supervised learning", because "unsupervised" is both a loaded and confusing term. In self-supervised learning, the system learns to predict part of its input from other parts of it input. In... https://www.facebook.com/722677142/posts/10155934004262143/ …
Hvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
This was a large team effort with
@coreylynch,@debidatta,@_pirk_, Jonathan Tompson, Mohi Khansari,@yusufaytar,@YevgenChebotar, Yunfei Bai,@hellojas,@ericjang11,@vikashplus,@xiao_ted,@stefanschaal, Andrew Zisserman,@svlevine and@psermanet.Prikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
My slides from the
@OpenAI robotics symposium, the main message is self-supervision on lots of unlabeled play data is an effective recipe for robotics, and we propose multiple methods to implement this recipe for vision and control:https://docs.google.com/presentation/d/145wBH7TEJoEclVzE1YKTihqIXWMljeNIA6ozwMZLb3Q/edit?usp=sharing …Prikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Very powerful self-supervised objective based on cycle consistency by
@debidatta, we show we can discover useful invariant representations of different states in videos although not having any labels for these states. Very useful for a bunch of things including imitation.https://twitter.com/debidatta/status/1118659621290307584 …
Hvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Great line-up at our ICML workshop on Self-Supervised Learning, it is very exciting to see this field gaining momentum!https://twitter.com/yusufaytar/status/1112450275120427013 …
Hvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Is play-pretraining the imagenet-pretraining of robotics?http://learning-from-play.github.io
Hvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
We were able to perform 8 tasks in a row in zero shots using a single task-agnostic policy.pic.twitter.com/Eb5AhgYxbJ
Prikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
How to scale-up multi-task learning? Self-supervise plan representations from lots of cheap unlabeled play data (no RL was used). http://learning-from-play.github.io by
@coreylynch, Mohi Khansari,@xiao_ted,@vikashplus, Jonathan Tompson,@svlevine and@psermanethttps://twitter.com/coreylynch/status/1103390681614082050 …
Prikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi
Čini se da učitavanje traje već neko vrijeme.
Twitter je možda preopterećen ili ima kratkotrajnih poteškoća u radu. Pokušajte ponovno ili potražite dodatne informacije u odjeljku Status Twittera.