olivierhenaff

@olivierhenaff

Research Scientist at DeepMind, interested in how brains and machines can learn without supervision

London, UK
Vrijeme pridruživanja: svibanj 2019.

Tweetovi

Blokirali ste korisnika/cu @olivierhenaff

Jeste li sigurni da želite vidjeti te tweetove? Time nećete deblokirati korisnika/cu @olivierhenaff

  1. Prikvačeni tweet
    9. pro 2019.

    Very happy to share our latest unsupervised representation learning work! In addition to SOTA linear classification, we beat supervised networks on ImageNet with 2-5x less labels and transfer to PASCAL detection better than supervised pre-training.

    Prikaži ovu nit
    Poništi
  2. proslijedio/la je Tweet
    9. pro 2019.

    Exciting updated results for self-supervised representation learning on ImageNet: - 71.5% top-1 with a *linear* classifier - 77.9% top-5 with only *1%* of the labels - 76.6 mAP when transferred to PASCAL VOC-07 (better than *fully-supervised's* 74.7 mAP)

    Prikaži ovu nit
    Poništi
  3. proslijedio/la je Tweet
    9. pro 2019.

    Beating previous state of the art in self-supervised learning for ImageNet by almost 3% absolute with less parameters (71.5% vs 68.6% top1). Extensive results for data-efficient learning on both ImageNet and Pascal VOC in the updated

    , , i još njih 2
    Poništi
  4. proslijedio/la je Tweet
    9. pro 2019.

    Unsupervised pre-training now outperforms supervised learning on ImageNet for any data regime (see figure) and also for transfer learning to Pascal VOC object detection

    , , i još njih 2
    Poništi
  5. 9. pro 2019.
    Prikaži ovu nit
    Poništi
  6. proslijedio/la je Tweet
    23. svi 2019.

    Deep learning has so far relied on massive amounts of supervision. We show that unsupervised representation learning with Contrastive Predictive Coding greatly improves data-efficiency: By and

    Poništi

Čini se da učitavanje traje već neko vrijeme.

Twitter je možda preopterećen ili ima kratkotrajnih poteškoća u radu. Pokušajte ponovno ili potražite dodatne informacije u odjeljku Status Twittera.

    Možda bi vam se svidjelo i ovo:

    ·