Nick Burns

@nickdaleburns

Data scientist, avid squash player, coffee drinker and dabbler in NLP and RL.

Vrijeme pridruživanja: ožujak 2018.

Tweetovi

Blokirali ste korisnika/cu @nickdaleburns

Jeste li sigurni da želite vidjeti te tweetove? Time nećete deblokirati korisnika/cu @nickdaleburns

  1. proslijedio/la je Tweet

    Now that and Charles derived these beautiful gradients... This year is gonna be all about Bayesian inference for HMMs using Hamiltonian Monte Carlo. And all the practical ways that things can go wrong when the data and model don’t agree.

    Prikaži ovu nit
    Poništi
  2. 1. velj

    I generally steer away from political posts - but this visualisation looks like it has been very carefully and purposefully designed to mislead. This is not-so-subtle subconscious manipulation.

    Poništi
  3. 31. sij

    So excited about Statistical Rethinking V2. McElreath's first edition changed my whole perspective. Cant wait!

    Poništi
  4. proslijedio/la je Tweet
    30. sij

    Wait WHAT? scales::show_col() let's you see what the palette looks like?? How did I not know this!! at

    Poništi
  5. 31. sij
    Poništi
  6. proslijedio/la je Tweet
    29. sij

    I've always been fascinated by Bayesian Nonparametrics. I struggled to grasp those ideas directly from papers. Today, by chance, I found the best (imo) single reference for anyone interested: A gentle introduction by and Michael Jordan

    Poništi
  7. proslijedio/la je Tweet

    Many of the most useful benefits to adopting Bayesian inference come from bespoke modeling that doesn’t depend on asymptotics to be valid. Ironically this is possible because Bayes is _easier_ to implement than frequentist methods.

    Poništi
  8. proslijedio/la je Tweet
    29. sij

    Ep. 8 of 'Learn Bayes Stats' is online! How do you apply Bayesian tools in the online ad industry or when you’re a software engineer or computer scientist? tells you how to use Bayesian thinking every day! See U in your favorite podcatcher or @

    Poništi
  9. proslijedio/la je Tweet
    29. sij

    The Internet of Things will continue to be a terrible idea until this sort of nonsense stops.

    Poništi
  10. proslijedio/la je Tweet
    29. sij

    I am working on an ebook, tentatively called Bite Size Bayes, that introduces Bayesian statistics gradually, for people with no prior stats. Here's Python notebook 2, if you want to check it out. R version coming soon!

    Poništi
  11. proslijedio/la je Tweet
    28. sij
    Poništi
  12. proslijedio/la je Tweet
    28. sij

    Causal inference in AI: Expressing potential outcomes in a graphical-modeling framework that can be fit using Stan

    Poništi
  13. proslijedio/la je Tweet
    27. sij

    Relevance Vector Machine (RVM) is like an SVM but with probabilistic classification. NASA is using it for "Remaining Useful Life Estimation".

    Poništi
  14. proslijedio/la je Tweet
    26. sij

    In the tradition of xxxToVec - here is Time2Vec - pretty interesting - represent time as a learned embedding - might try this with some eeg data.

    Poništi
  15. proslijedio/la je Tweet
    24. sij

    You can code? Great. Congrats on having a superpower. Now what the fuck are you going to do with it?

    Prikaži ovu nit
    Poništi
  16. proslijedio/la je Tweet
    24. sij
    Poništi
  17. proslijedio/la je Tweet
    23. sij

    [From the archives:] How Graphs Enhance – a SF GraphTour talk with

    Poništi
  18. 23. sij
    Poništi
  19. 23. sij
    Poništi
  20. proslijedio/la je Tweet
    23. sij

    Improve predictions with domain knowledge: Ch 6 from Bayesian Hackers in Probability, newly updated. Done with my first pass of all chapters, now back to Ch. 1 to make more TF2 friendly.

    Poništi

Čini se da učitavanje traje već neko vrijeme.

Twitter je možda preopterećen ili ima kratkotrajnih poteškoća u radu. Pokušajte ponovno ili potražite dodatne informacije u odjeljku Status Twittera.

    Možda bi vam se svidjelo i ovo:

    ·