Tweetovi
- Tweetovi, trenutna stranica.
- Tweetovi i odgovori
- Medijski sadržaj
Blokirali ste korisnika/cu @neptune_ai
Jeste li sigurni da želite vidjeti te tweetove? Time nećete deblokirati korisnika/cu @neptune_ai
-
#HowTo Monitor ROC curve in#keras: 1. Create a callback that takes model and data 2. in on_epoch_end method: - run prediction on data - create ROC curve figure - save figure somewhere Other tricks in this article: http://bit.ly/2O7ukso#MachineLearning#DeepLearningpic.twitter.com/KAd7VJsGcUHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
"Exploratory Data Analysis for NLP: A Complete Guide to Python Tools" New article on our blog by
@Shahules786. Comes with code snippets and "EDA for NLP template"@ProjectJupyter notebook. Great read! http://bit.ly/36DX42j#MachineLearning#DataScience#NLProcpic.twitter.com/OeN9c9dauSHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Neptune logging was added to
@PyTorchLightnin (lightweight@PyTorch wrapper) and it's so easy to use: trainer = Trainer(logger=NeptuneLogger(...)) Check how to use it: http://bit.ly/2FSNHRu#MachineLearning#DeepLearningpic.twitter.com/3HuRtNcsmiHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
#EDAforNLP trick 3 Explore text data via Topic Modeling: - run topic modeling (LDA) - visualize topics by showing word frequencies per topic You can use pyLDAvis to do it interactively. More tricks in this post: http://bit.ly/2tQR2OJ#MachineLearning#DataScience#NLProcpic.twitter.com/PDiARKUryXHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
#ToolAlert TextBlob - good and easy to use#Python lib for sentiment analysis from@sloria1 Check it out here: http://bit.ly/35Pl9CP Read about other useful#NLProc tools in this post: http://bit.ly/313UilZ#MachineLearning#DataScienceHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
#EDAforNLP trick 1 Visualizing text statistics like: - word length frequencies - stopword frequencies - document length - etc. with histograms and bar charts is a simple yet powerful technique. More trick in this post: http://bit.ly/313UilZ#MachineLearning#DataSciencepic.twitter.com/4p4C6BkzMl
Hvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
"Keras metrics: Everything You Need to Know" New article on our blog by
@_mwitiderrick! Talks about in-build and custom metrics for#keras and#TensorFlow keras. + callbacks for logging ROC and more. http://bit.ly/2O7ukso#MachineLearning#DataScience#DeepLearningpic.twitter.com/7i6PEKxEaTHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
You wish you could run
#MachineLearning experiments in notebooks and auto-snapshot .ipynb changes? We made it happen: - install the extension http://bit.ly/2Nytncj - create an experiment with neptune.create_experiment - check your notebook snapshot!#DeepLearning#DataSciencepic.twitter.com/QDhSCymDxAHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Neptune integrates with Optuna from
@PreferredNetJP! It is simple. 1. Add a callback: study.optimize(objective, n_trials=100, callbacks=[opt_utils.NeptuneMonitor()]) 2. Monitor your search results. 3. Done. http://bit.ly/37GTGoJ#MachineLearning#DataScience#DeepLearningpic.twitter.com/lFUHK3wPzcHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Neptune logging was added to
@Pytorch Ignite (lib that makes writing compact#DeepLearning training loops easy)! It's simple: npt_logger = NeptuneLogger() npt_logger.attach(trainer, log_handler=OutputHandler()) trainer. run() That's it! Read more: http://bit.ly/3aR3puB pic.twitter.com/hsX7VMKr8cHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
#Resource A nicely structured collection of build-it-from-scratch notebooks that really go in-depth into many#MachineLearning concepts. If you want to understand a particular concept check this project out! http://bit.ly/2U8gNoh#DataScience#DeepLearningHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
#HowTo create custom metrics in#Tensorow keras 1. Inherit from tf.keras.metrics.Metric 2. Override methods: - update_state - result - reset_states 3. pass to .compile() Other#keras metrics tricks in this article: http://bit.ly/2O7ukso#MachineLearning#DeepLearningpic.twitter.com/Y61erVCdYn
Hvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
#EDAforNLP trick 8 Use text complexity: - use lib like textstat to extract text readability index - create a histogram of complexity scores - find the most difficult documents More tricks in this post: http://bit.ly/2tQR2OJ#MachineLearning#DataScience#NLProcpic.twitter.com/bT5t9CsVkn
Hvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Working on
@ProjectJupyter notebooks together can be tricky. Being able to track and share your checkpoints can make things a bit easier. Check our docs http://bit.ly/2FUwoPV#MachineLearning#DataSciencepic.twitter.com/5sUSOPsxHvHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
#ToolAlert textstat - easy to use tool for calculating text complexity (readability indexes) from@shivamshaz Check it out here: http://bit.ly/2QPZMx3 Read about other useful#NLProc tools in this post: http://bit.ly/313UilZ#MachineLearning#DataScienceHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Neptune logging was added to
@catalyst_core, a tool built on top of@PyTorch that simplifies#DeepLearning and#ReinforcementLearning model training. Really easy to set up: runner = SupervisedNeptuneRunner() runner.train(...) That's it! Read more: http://bit.ly/2U6UoaY pic.twitter.com/Uj26cVBlCbHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
"Keras metrics: Everything You Need to Know" New article on our blog by
@_mwitiderrick Talks about in-build and custom metrics for#keras and#TensorFlow keras. + callbacks for logging ROC and more. http://bit.ly/2O7ukso#MachineLearning#DataScience#DeepLearningpic.twitter.com/GdSy9T6uJdHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
It is rare to have people among your investors who understand your niche so well. Thank you so much
@agoeldi and@btovPartners for believing in us! Also, the reasoning behind your decision is so nicely put. Highly recommended read.https://twitter.com/agoeldi/status/1222477292145868807 …Hvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
This is such an awesome idea! Tracking
#MachineLearning experiments is even easier with this.https://twitter.com/DanyWinnd/status/1222234331176935427 …
Hvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
neptune.ai proslijedio/la je Tweet
If you're interested in becoming involved in my new project dabl https://amueller.github.io/dabl/dev/ , I tagged some easy first issues. Given that it's pretty early in the development, the barrier to entry should hopefully be much lower than in sklearn for example: https://github.com/amueller/dabl/issues?q=is%3Aissue+is%3Aopen+sort%3Aupdated-desc+label%3A%22good+first+issue%22 …
Hvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi
Čini se da učitavanje traje već neko vrijeme.
Twitter je možda preopterećen ili ima kratkotrajnih poteškoća u radu. Pokušajte ponovno ili potražite dodatne informacije u odjeljku Status Twittera.