We can measure the second qubit as early as we like, without changing the output from the circuit. In fact, we can do the measurement right at the beginning of the protocol, giving:pic.twitter.com/obUVj5snWf
Searching for the numinous. Co-purveyor of https://quantum.country/
You can add location information to your Tweets, such as your city or precise location, from the web and via third-party applications. You always have the option to delete your Tweet location history. Learn more
Add this Tweet to your website by copying the code below. Learn more
Add this video to your website by copying the code below. Learn more
By embedding Twitter content in your website or app, you are agreeing to the Twitter Developer Agreement and Developer Policy.
| Country | Code | For customers of |
|---|---|---|
| United States | 40404 | (any) |
| Canada | 21212 | (any) |
| United Kingdom | 86444 | Vodafone, Orange, 3, O2 |
| Brazil | 40404 | Nextel, TIM |
| Haiti | 40404 | Digicel, Voila |
| Ireland | 51210 | Vodafone, O2 |
| India | 53000 | Bharti Airtel, Videocon, Reliance |
| Indonesia | 89887 | AXIS, 3, Telkomsel, Indosat, XL Axiata |
| Italy | 4880804 | Wind |
| 3424486444 | Vodafone | |
| » See SMS short codes for other countries | ||
This timeline is where you’ll spend most of your time, getting instant updates about what matters to you.
Hover over the profile pic and click the Following button to unfollow any account.
When you see a Tweet you love, tap the heart — it lets the person who wrote it know you shared the love.
The fastest way to share someone else’s Tweet with your followers is with a Retweet. Tap the icon to send it instantly.
Add your thoughts about any Tweet with a Reply. Find a topic you’re passionate about, and jump right in.
Get instant insight into what people are talking about now.
Follow more accounts to get instant updates about topics you care about.
See the latest conversations about any topic instantly.
Catch up instantly on the best stories happening as they unfold.
We can measure the second qubit as early as we like, without changing the output from the circuit. In fact, we can do the measurement right at the beginning of the protocol, giving:pic.twitter.com/obUVj5snWf
We can now ignore the second qubit - it no longer has any impact on the output we're interested in. We can also commute the X^x past the CNOT target, to get:pic.twitter.com/AqM7vyjC48
I don't know of any way of computing the output here, except to do the algebra:pic.twitter.com/KQ4FnQgP0C
Of course, we could have just done the algebra for the whole 3-qubit system up front. It's really not very complicated, & that's how I've always done it in the past. But I noticed this approach a few hours ago, & rather like it. It's in some sense longer, but more elegant.
No claim that this is new! But it was new & pleasing to me, a slightly new way of seeing an old friend.
Update: In fact, it is possible to analyze the two-qubit circuit with almost no algebra. Ignoring the final Z^z gate, the main thing to analyze is this circuit:pic.twitter.com/WcJOsjJCrN
We run the state through the CNOT, and then Hadamard + measurement is equivalent to measuring in the <+| or <-| basis:pic.twitter.com/oWK4nI63El
The resulting conditional states are as shown, and we can simply cancel the Z^z term:pic.twitter.com/Pvuyw9FSVQ
I really like the first part of the proof: it's just a quantum one-time pad. I don't quite know how to think about the second part of the proof. Why does measuring in the |+>, |-> basis work? It's easy to prove it does, but I don't have a really good explanation for why.
That's a measurement based uncomputation. If a qubit Q is a computational basis function of other qubits R, you can get rid of Q by measuring it in the X basis and using the result to control phasing operations on R. Useful tool. e.g. see Appendix C of https://arxiv.org/abs/1902.02134
That appendix doesn't seem to address my question. Note that I'm extremely familiar with the facts you mention - I've written papers based on those observations (and a review: https://arxiv.org/pdf/quant-ph/0504097.pdf … ). But none of that gives a conceptual explanation.
The X basis measurement works because the last thing that happened to Q was being targeted by a CNOT. This is an X basis interaction. So an X basis measurement commutes with this operation. Allows you to use the deferred measurement principle, leaving no 2-qubit ops on Q.
X does not commute with the CNOT control, which this is.
Twitter may be over capacity or experiencing a momentary hiccup. Try again or visit Twitter Status for more information.