Tweetovi
- Tweetovi, trenutna stranica.
- Tweetovi i odgovori
- Medijski sadržaj
Blokirali ste korisnika/cu @mcmc_stan
Jeste li sigurni da želite vidjeti te tweetove? Time nećete deblokirati korisnika/cu @mcmc_stan
-
Prikvačeni tweet
RStan should now work on Catalina with new version of
@axiomsofxyz's toolchain installer for R https://discourse.mc-stan.org/t/dealing-with-catalina-ii/11802 …. Thanks to everyone who helped troubleshoot!Hvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
StanCon 2020 (August 11-14 Oregon State University) registration is now openhttps://discourse.mc-stan.org/t/stancon-2020-august-11-14-at-oregon-state-university-registration-is-now-open/11854/16 …
Hvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Stan proslijedio/la je Tweet
Our preprint is out!
We modelled the evolution of eczema severity and how patients respond to treatments from a Bayesian and mechanistic perspective, using Stan @mcmc_stanhttps://twitter.com/TanakaGroup/status/1221375411894018049 …Hvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Stan proslijedio/la je Tweet
Computing a test & roll sample size requires information about the range of average response you expect from your treatments. Using data on the past performance of similar treatments, you can estimate priors with an HB model using tools like
@mcmc_stan and@pymc3. 14/17Prikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Stan proslijedio/la je Tweet
Check out this preprint on hierarchical bayesian signal detection models by
@BRSLWP: https://www.psycharchives.org/handle/20.500.12034/2339 … They also have an accompanying R package that implements the models in@mcmc_stan language.pic.twitter.com/YvmMBYJA4W
Hvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Stan proslijedio/la je Tweet
New loo CRAN release https://cran.r-project.org/package=loo has LOO with subsampling and approximations to posterior distributions which make LOO much faster for large data. See a vignette http://mc-stan.org/loo/articles/loo2-large-data.html … for examples and references.
@MansMeg@paulbuerkner@mcmc_stan@AaltoPML@CSAaltopic.twitter.com/3mKALQIenW
Prikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Stan proslijedio/la je Tweet
Over the xmas and new year's break, I wanted to learn about state space models. Forked
@sinhrks's repo where he tried to recreate the models from http://ssfpack.com/CKbook.html using@mcmc_stan. Super helpful! My modifications & extensions into Ch8: http://github.com/dantonnoriega/stan-statespace …#rstatsPrikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Stan proslijedio/la je Tweet
Running
@mcmc_stan models. Only doing 1000 warmup and an additional 1000 iterations and thinning in half on 6 chains for N-mixture model. No divergences and good tail ESS. So weird after running 100,000 in JAGS previously.Hvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Stan proslijedio/la je Tweet
This past semester I taught a graduate-level course on Bayesian inference and applied statistical modeling. I'm making all of the computer labs publically available here: https://bitbucket.org/jrmihalj/bayesian_comp_labs/src/master/ … Let me know if you need help with solutions!
#rstats Rmarkdown@mcmc_stan RStanARM.pic.twitter.com/QyjGdmJgiS
Hvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Stan proslijedio/la je Tweet
[pt3] if you cannot get a very reliable measure, you should take the (un)reliability into account. Bayesian models do this nicely.
@BeiSci linked our pub using@mcmc_stan also Mplus has facilities and this pub has power sims: https://www.statmodel.com/download/Ukast2_2017-09-19_2.pdf …Hvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Stan proslijedio/la je Tweet
Nice econometrics postdoc position to apply to
@mcmc_stan https://statmodeling.stat.columbia.edu/2019/11/22/econometrics-computational-statistics-postdocs-stan/ …Hvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Stan proslijedio/la je Tweet
From July 2015 to this week, RStan for
@mcmc_stan has been downloaded from RStudio CRAN mirror one million times (loo 630K times). Python users love much more downloading as PyStan gets 700K+ downloads just in the last month.Prikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Stan proslijedio/la je Tweet
Stan ecology community, it's happening! https://discourse.mc-stan.org/t/creating-a-stan-ecology-page/12388 … Very much looking forward to putting this together with all of the wonderful people in the community already using Stan!
@mcmc_stan#BayesianWorkflowspic.twitter.com/hnsWPtdMz9
Prikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Stan proslijedio/la je Tweet
If you see something weird about open source software, say something.
@polesasunder found a weird discrepancy in some@mcmc_stan results, posted about it on discourse with a simple reproducible example, and the bug was found super fast!Prikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Stan proslijedio/la je Tweet
A little late announcing this. In early Nov I became one of the members of the Stan Governing Body & I'm very excited about contributing to this amazing open-source project in this role.https://discourse.mc-stan.org/t/results-of-election-to-stan-governing-body/11862 …
Prikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Stan proslijedio/la je Tweet
Bayesian longitudinal models using additive GPs including uncertainty in disease effect times and heterogeneous effects by
@TimonenJuho, Henrik Mannerström, I and@HLahdesmaki. lgpr package built on top of@mcmc_stan at https://jtimonen.github.io/lgpr-usage/index.html … Preprint at https://arxiv.org/abs/1912.03549 pic.twitter.com/6NNtV5CEG7
Hvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Stan proslijedio/la je Tweet
How many Stan users are there? https://statmodeling.stat.columbia.edu/2019/12/09/how-many-stan-users-are-there/ …
Hvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Stan proslijedio/la je Tweet
An example of
@mcmc_stan exploring joint posterior space for some normally distributed data using#gganimate in#rstats. This represents only 150 samples/chain (for the sake of brevity), which means most chains have found the target after only about 50 iterations. So cool.pic.twitter.com/YiJVdqpiwbHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Stan proslijedio/la je Tweet
Interested in
#Bayesian#Statistics? We will run the 2nd edition of the course" An introduction to computational Bayesian methods" with@shravanvasishth and@bruno_nicenboim at the@FU_Berlin next March. If interested, please see: https://www.physalia-courses.org/courses-workshops/course46/ …@mcmc_stan#rstatspic.twitter.com/0q3vjfisbX
Hvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Bob Carpenter's nice list of recent progress in the Stan communityhttps://twitter.com/StatModeling/status/1199143084510109701 …
Hvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Stan proslijedio/la je Tweet
New coding example on my website: "NFL field goal attempts: modeling the long shots" In which I take a *three*-parameter model to 50,741 coin flips. H/T to
@willjharrison for suggesting the informative prior.#rstats@mcmc_stan https://jamesblandecon.github.io/NFLFieldGoalsDistance.html …pic.twitter.com/F6Y1IqZBUr
Prikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi
Čini se da učitavanje traje već neko vrijeme.
Twitter je možda preopterećen ili ima kratkotrajnih poteškoća u radu. Pokušajte ponovno ili potražite dodatne informacije u odjeljku Status Twittera.
: Personalised prediction of daily eczema severity scores using a mechanistic machine learning model