Tweetovi
- Tweetovi, trenutna stranica.
- Tweetovi i odgovori
- Medijski sadržaj
Blokirali ste korisnika/cu @maithra_raghu
Jeste li sigurni da želite vidjeti te tweetove? Time nećete deblokirati korisnika/cu @maithra_raghu
-
Prikvačeni tweet
Excited to be one of the Forbes 30 under 30 in Science!
#ForbesUnder30 Full list: https://bit.ly/2DjKEllHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Had a fantastic week learning about exciting research directions and meeting old and new friends at
#NeurIPS2019. Thanks to the organizers, volunteers and participants for a wonderful conference! My talk at#ML4H is at https://bit.ly/2ElI2Cz (~44 mins), and posters below!pic.twitter.com/1KKGOQV4s8
Hvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Maithra Raghu proslijedio/la je Tweet
Three awesome women kicking off the
#ML4H workshop:@DaphneKoller ,@maithra_raghu, and Xinyu Li!#WIML#NeurIPS2019Hvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
How does transfer learning for medical imaging affect performance, representations and convergence? Check out the blogpost below and our
#NeurIPS2019 paper https://arxiv.org/abs/1902.07208 for some of the surprising conclusions, new approaches and open questions!https://twitter.com/GoogleAI/status/1203026419883732992 …Hvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Maithra Raghu proslijedio/la je Tweet
Want to improve accuracy and robustness of your model? Use unlabeled data! Our new work uses self-training on unlabeled data to achieve 87.4% top-1 on ImageNet, 1% better than SOTA. Huge gains are seen on harder benchmarks (ImageNet-A, C and P). Link: https://arxiv.org/abs/1911.04252 pic.twitter.com/0umSnX7wui
Prikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
How do representations evolve as they go through the transformer? How does the Masked Language Model objective affect these compared to Language Models? How much do different tokens change and influence other tokens? Answers in the paper by
@lena_voita: https://lena-voita.github.io/posts/emnlp19_evolution.html …!pic.twitter.com/PhPp0X50vi
Hvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Maithra Raghu proslijedio/la je Tweet
I'm so excited to share our hard work over the last 6 months
! It's been quite the journey: I joined @EloquentLabs after completing my PhD at@stanfordnlp. In less than a year we were acquired by@Square and 6 months later, we have a product that touches millions of people!https://twitter.com/Square/status/1184875202997407745 …Hvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Rapid Learning or Feature Reuse? New paper: https://arxiv.org/abs/1909.09157 We analyze MAML (and meta-learning and meta learning more broadly) finding that feature reuse is the critical component in the efficient learning of new tasks -- leading to some algorithmic simplifications!https://twitter.com/OriolVinyalsML/status/1176179600755478530 …
Hvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Maithra Raghu proslijedio/la je Tweet
Rapid Learning or Feature Reuse? Meta-learning algorithms on standard benchmarks have much more feature reuse than rapid learning! This also gives us a way to simplify MAML -- (Almost) No Inner Loop (A)NIL. https://arxiv.org/abs/1909.09157 With Aniruddh Raghu
@maithra_raghu Samy Bengio.pic.twitter.com/7T6SzMYfiY
Hvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Maithra Raghu proslijedio/la je Tweet
New EMNLP paper “Investigating Multilingual NMT Representation at Scale” w/
@ankurbpn,@orf_bnw, @caswell_isaac,@naveenariva. We study transfer in massively multilingual NMT@GoogleAI from the perspective of representational similarity. Paper: https://arxiv.org/pdf/1909.02197.pdf … 1/npic.twitter.com/oai93dFsOw
Prikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Our paper on Understanding Transfer Learning for Medical Imaging has been accepted to
#NeurIPS2019!! Preprint: https://arxiv.org/abs/1902.07208 As a positive datapoint: we had a good reviewing experience, with detailed feedback and mostly useful comments. Thanks to the Program Chairs!pic.twitter.com/moMuvaNvlr
Hvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Looking forward to speaking about Artificial and Human Intelligence in Healthcare at the
#OReillyAI conference https://oreil.ly/33w8Nj2 ! Will discuss developing better AI systems and human expert interactions: https://arxiv.org/abs/1902.07208 https://arxiv.org/abs/1807.01771 https://arxiv.org/abs/1903.12220Hvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Thanks to the organizers
@aleks_madry Samy Bengio and@tengyuma for a very interesting program!Prikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Looking forward to attending/speaking at the Frontiers of Deep Learning workshop https://simons.berkeley.edu/workshops/schedule/10627 … at
@SimonsInstitute! Exciting talks on generalization, robustness, model-based RL (w/ videos after!) I'll speak about our work on transfer learning: https://arxiv.org/abs/1902.07208Prikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Intriguing invited talk at
#DeepPhenomena from Chiyuan Zhang on the effect of resetting different layers: Are all layers created equal? https://arxiv.org/abs/1902.01996#ICML2019@icmlconfpic.twitter.com/ogd3VD7613
Hvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
ML models can learn to find cases of high human expert disagreement, with a direct prediction method provably outperforming classifier reuse. We test this on synthetic tasks and a large scale medical application. With Katy Blumer Rory Sayres
@oziadias@m_sendhil Jon KleinbergPrikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Our paper on using Machine Learning (Direct Uncertainty Prediction) for predicting doctor disagreements and medical second opinions will be at
@icmlconf next week! Blog: http://maithraraghu.com/blog/2019/Direct_Uncertainty_Prediction/ … Paper: https://arxiv.org/abs/1807.01771#icml2019#DeepLearningpic.twitter.com/SB6bBWaSfC
Prikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Hvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi
-
Maithra Raghu proslijedio/la je Tweet
I had to record a lightning talk for my
@naacl poster, so my brother@SaltyFun_SSB improvised a soundtrack on the piano and now it sounds EXCITING.pic.twitter.com/IX9KxR3RhqHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Maithra Raghu proslijedio/la je Tweet
If you are working on empirical phenomena in deep learning, consider submitting to our ICML workshop "Identifying and Understanding Deep Learning Phenomena" (http://deep-phenomena.org/ ). The deadline is May 5, but relevant work that was already published elsewhere is still welcome!
Prikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Huge thanks to many people
@arunchaganty@poolio@2plus2make5@ch402@rbhar90@ilyasut@quocleix for the feedback
Prikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi
Čini se da učitavanje traje već neko vrijeme.
Twitter je možda preopterećen ili ima kratkotrajnih poteškoća u radu. Pokušajte ponovno ili potražite dodatne informacije u odjeljku Status Twittera.
Reduce no-shows with Square Assistant, an automated messaging tool that responds to clients looking to confirm or change their appointments for you.