Preskoči na sadržaj
Korištenjem servisa na Twitteru pristajete na korištenje kolačića. Twitter i partneri rade globalno te koriste kolačiće za analize, personalizaciju i oglase.

Za najbolje sučelje na Twitteru koristite Microsoft Edge ili instalirajte aplikaciju Twitter iz trgovine Microsoft Store.

  • Naslovnica Naslovnica Naslovnica, trenutna stranica.
  • O Twitteru

Spremljena pretraživanja

  • obriši
  • U ovom razgovoru
    Ovjeren akauntZaštićeni tweetovi @
Predloženi korisnici
  • Ovjeren akauntZaštićeni tweetovi @
  • Ovjeren akauntZaštićeni tweetovi @
  • Jezik: Hrvatski
    • Bahasa Indonesia
    • Bahasa Melayu
    • Català
    • Čeština
    • Dansk
    • Deutsch
    • English
    • English UK
    • Español
    • Filipino
    • Français
    • Italiano
    • Magyar
    • Nederlands
    • Norsk
    • Polski
    • Português
    • Română
    • Slovenčina
    • Suomi
    • Svenska
    • Tiếng Việt
    • Türkçe
    • Български език
    • Русский
    • Српски
    • Українська мова
    • Ελληνικά
    • עִבְרִית
    • العربية
    • فارسی
    • मराठी
    • हिन्दी
    • বাংলা
    • ગુજરાતી
    • தமிழ்
    • ಕನ್ನಡ
    • ภาษาไทย
    • 한국어
    • 日本語
    • 简体中文
    • 繁體中文
  • Imate račun? Prijava
    Imate račun?
    · Zaboravili ste lozinku?

    Novi ste na Twitteru?
    Registrirajte se
Profil korisnika/ce kaznatcheev
Artem Kaznatcheev
Artem Kaznatcheev
Artem Kaznatcheev
@kaznatcheev

Tweets

Artem Kaznatcheev

@kaznatcheev

Use cancer to know biology. View learning & evolution + philosophy of sci through the algorithmic lens. Blogger at TheEGG. DPhil at Oxford CS. On the job market

Oxford, England
egtheory.wordpress.com
Vrijeme pridruživanja: kolovoz 2016.

Tweets

  • © 2020 Twitter
  • O Twitteru
  • Centar za pomoć
  • Uvjeti
  • Pravila o privatnosti
  • Imprint
  • Kolačići
  • Informacije o oglasima
Odbaci
Prethodni
Sljedeće

Idite na profil osobe

Spremljena pretraživanja

  • obriši
  • U ovom razgovoru
    Ovjeren akauntZaštićeni tweetovi @
Predloženi korisnici
  • Ovjeren akauntZaštićeni tweetovi @
  • Ovjeren akauntZaštićeni tweetovi @

Odjava

Blokiraj

  • Objavi Tweet s lokacijom

    U tweetove putem weba ili aplikacija drugih proizvođača možete dodati podatke o lokaciji, kao što su grad ili točna lokacija. Povijest lokacija tweetova uvijek možete izbrisati. Saznajte više

    Vaši popisi

    Izradi novi popis


    Manje od 100 znakova, neobavezno

    Privatnost

    Kopiraj vezu u tweet

    Ugradi ovaj Tweet

    Embed this Video

    Dodajte ovaj Tweet na svoje web-mjesto kopiranjem koda u nastavku. Saznajte više

    Dodajte ovaj videozapis na svoje web-mjesto kopiranjem koda u nastavku. Saznajte više

    Hm, došlo je do problema prilikom povezivanja s poslužiteljem.

    Integracijom Twitterova sadržaja u svoje web-mjesto ili aplikaciju prihvaćate Twitterov Ugovor za programere i Pravila za programere.

    Pregled

    Razlog prikaza oglasa

    Prijavi se na Twitter

    · Zaboravili ste lozinku?
    Nemate račun? Registrirajte se »

    Prijavite se na Twitter

    Niste na Twitteru? Registrirajte se, uključite se u stvari koje vas zanimaju, i dobivajte promjene čim se dogode.

    Registrirajte se
    Imate račun? Prijava »

    Dvosmjerni (slanje i primanje) kratki kodovi:

    Država Kod Samo za korisnike
    Sjedinjene Američke Države 40404 (bilo koje)
    Kanada 21212 (bilo koje)
    Ujedinjeno Kraljevstvo 86444 Vodafone, Orange, 3, O2
    Brazil 40404 Nextel, TIM
    Haiti 40404 Digicel, Voila
    Irska 51210 Vodafone, O2
    Indija 53000 Bharti Airtel, Videocon, Reliance
    Indonezija 89887 AXIS, 3, Telkomsel, Indosat, XL Axiata
    Italija 4880804 Wind
    3424486444 Vodafone
    » Pogledajte SMS kratke šifre za druge zemlje

    Potvrda

     

    Dobro došli kući!

    Vremenska crta mjesto je na kojem ćete provesti najviše vremena i bez odgode dobivati novosti o svemu što vam je važno.

    Tweetovi vam ne valjaju?

    Prijeđite pokazivačem preko slike profila pa kliknite gumb Pratim da biste prestali pratiti neki račun.

    Kažite mnogo uz malo riječi

    Kada vidite Tweet koji volite, dodirnite srce – to osobi koja ga je napisala daje do znanja da vam se sviđa.

    Proširite glas

    Najbolji je način da podijelite nečiji Tweet s osobama koje vas prate prosljeđivanje. Dodirnite ikonu da biste smjesta poslali.

    Pridruži se razgovoru

    Pomoću odgovora dodajte sve što mislite o nekom tweetu. Pronađite temu koja vam je važna i uključite se.

    Saznajte najnovije vijesti

    Bez odgode pogledajte o čemu ljudi razgovaraju.

    Pratite više onoga što vam se sviđa

    Pratite više računa da biste dobivali novosti o temama do kojih vam je stalo.

    Saznajte što se događa

    Bez odgode pogledajte najnovije razgovore o bilo kojoj temi.

    Ne propustite nijedan aktualni događaj

    Bez odgode pratite kako se razvijaju događaji koje pratite.

    Artem Kaznatcheev‏ @kaznatcheev 5. ožu 2019.
    • Prijavi Tweet

    Local peaks can't always be found quickly! Hard landscapes are subject to ultimate constraint on evolution: computation. Can hide winding paths. http://www.genetics.org/content/early/2019/03/04/genetics.119.302000 … My path to this paper has been very long: ~7 years in the making. It finally found its peak in @GeneticsGSA.pic.twitter.com/LiYdL9elc8

    08:45 - 5. ožu 2019.
    • 89 proslijeđenih tweetova
    • 223 oznake „sviđa mi se”
    • once was Ivy Xiong Dr. Camilla Pang Punished tacos Rubén González Kate Bear Qeios Clemens Grassberger Edwin Dalmaijer
    Jacob G Scott, Joshua B. Plotkin, Richard E. Lenski i još njih 7
    1. Jacob G Scott @CancerConnector

    2. Joshua B. Plotkin @jplotkin

    3. Richard E. Lenski @RELenski

    4. Steven Strogatz @stevenstrogatz

    5. Carl Zimmer @carlzimmer

    6. Carl T. Bergstrom @CT_Bergstrom

    7. EES Update @EES_update

    8. Alex Gavryushkin @bioDS_lab

    9. Sergey Kryazhimskiy @skryazhi

    10. Dan Nichol @D4N__

    8 replies 89 proslijeđenih tweetova 223 korisnika označavaju da im se sviđa
      1. Novi razgovor
      2. Artem Kaznatcheev‏ @kaznatcheev 5. ožu 2019.
        • Prijavi Tweet

        I'm glad to see this paper is popular with twitter. Thanks! Since I don't have a SoundCloud to plug, I thought I'd make a tweetstorm summarizing the main results of this paper. There is a lot to go through, so I apologize for the length of the thread. But I hope you enjoy!

        1 reply 0 proslijeđenih tweetova 7 korisnika označava da im se sviđa
        Prikaži ovu nit
      3. Artem Kaznatcheev‏ @kaznatcheev 5. ožu 2019.
        • Prijavi Tweet

        Evolutionary constrains keep populations away from local optima (peaks) in fitness landscapes. I introduce a division of constraints into 2 types: proximal & ultimate. This is related to computer science distinction between algorithms & problems [1/n]:https://egtheory.wordpress.com/2018/07/24/evolutionary-constraints/ …

        1 reply 4 proslijeđena tweeta 17 korisnika označava da im se sviđa
        Prikaži ovu nit
      4. Artem Kaznatcheev‏ @kaznatcheev 5. ožu 2019.
        • Prijavi Tweet

        Proximal constrains are due to properties of the ‘algorithm’: i.e. strength of various other evolutionary forces (drift, entropic drive, etc), population structure, standing genetic variation, etc. [2/n]

        1 reply 0 proslijeđenih tweetova 4 korisnika označavaju da im se sviđa
        Prikaži ovu nit
      5. Artem Kaznatcheev‏ @kaznatcheev 5. ožu 2019.
        • Prijavi Tweet

        Ultimate constraints are due exclusively to the ‘problem’: i.e. the fitness landscape itself (a combination of natural selection and the notion of ‘proximity’). [3/n]

        1 reply 0 proslijeđenih tweetova 4 korisnika označavaju da im se sviđa
        Prikaži ovu nit
      6. Artem Kaznatcheev‏ @kaznatcheev 5. ožu 2019.
        • Prijavi Tweet

        A local peak stopping evolution from finding a global peak is a classical example of an ultimate constraint. The historicity constraint. But it is only partial: it prevents finding some optima (like the global one) by trapping us at other local optima. [4/n]

        1 reply 1 proslijeđeni tweet 4 korisnika označavaju da im se sviđa
        Prikaži ovu nit
      7. Artem Kaznatcheev‏ @kaznatcheev 5. ožu 2019.
        • Prijavi Tweet

        Paper's goal is to show full ultimate constraint: one that prevents finding any local optimum -- even the lowest fitness one. Thus, fitter mutants are 'always' available, even though landscape is finite. This would give us a foundational explanation for open-ended evolution [5/n]

        1 reply 3 proslijeđena tweeta 7 korisnika označava da im se sviđa
        Prikaži ovu nit
      8. Artem Kaznatcheev‏ @kaznatcheev 5. ožu 2019.
        • Prijavi Tweet

        To achieve this, I introduce the distinction between: Easy fitness landscapes where evolution can be proved to find a local peak in polynomial time, and Hard fitness landscapes where evolution cannot find _any_ local fitness peak in polynomial time. [6/n]

        2 proslijeđena tweeta 5 korisnika označava da im se sviđa
        Prikaži ovu nit
      9. Artem Kaznatcheev‏ @kaznatcheev 5. ožu 2019.
        • Prijavi Tweet

        Epistasis between loci is what can make landscapes hard: https://egtheory.wordpress.com/2013/08/18/empirical-epistasis/ … There are three main kinds (and their rotations by relabeling) of epistasis on two loci: no epistais (or magnitude epistasis), sign epistasis, & reciprocal sign epistasis (RSE). [7/n]pic.twitter.com/4633cPr0n1

        1 reply 1 proslijeđeni tweet 5 korisnika označava da im se sviđa
        Prikaži ovu nit
      10. Artem Kaznatcheev‏ @kaznatcheev 5. ožu 2019.
        • Prijavi Tweet

        Reciprocal sign epistasis is req'd for ruggedness/multi-peak. (1st proved by Poelwijk et al.: https://www.sciencedirect.com/science/article/pii/S0022519310006703 … & diff. proof by me). So I def. landscapes as ‘semi-smooth’ if they have no RSE (but sign epistasis is possible). [8/n] For more, see:https://egtheory.wordpress.com/2013/09/12/semi-smooth-fitness-landscapes-and-the-simplex-algorithm/ …

        1 reply 0 proslijeđenih tweetova 2 korisnika označavaju da im se sviđa
        Prikaži ovu nit
      11. Artem Kaznatcheev‏ @kaznatcheev 5. ožu 2019.
        • Prijavi Tweet

        To connect to #cstheory, I show that semi-smooth fitness landscapes are equivalent tothe acyclic unique-sink orientations of polytopes (AUSOs) that are used in combinatorial optimization, especially in the analysis of simplex algorithms. [9/n]

        1 reply 1 proslijeđeni tweet 7 korisnika označava da im se sviđa
        Prikaži ovu nit
      12. Artem Kaznatcheev‏ @kaznatcheev 5. ožu 2019.
        • Prijavi Tweet

        This allowed me to prove that in semi-smooth fitness landscapes, a minimal-length adaptive path always exists to the unique fitness peak. But this short adaptive path can be hard to spot among the long adaptive paths. [10/n]pic.twitter.com/QowgYi2AlQ

        1 reply 2 proslijeđena tweeta 5 korisnika označava da im se sviđa
        Prikaži ovu nit
      13. Artem Kaznatcheev‏ @kaznatcheev 5. ožu 2019.
        • Prijavi Tweet

        For example, if our model of evolution is the fittest-mutant strong-selection weak-mutation (SSWM) dynamic then I can (recursively) construct an explicit semi-smooth landscapes where the dynamics will take an exponential number of steps (i.e. be trapped on a long path). [11/n]pic.twitter.com/7yYCLpEIcE

        1 reply 1 proslijeđeni tweet 3 korisnika označavaju da im se sviđa
        Prikaži ovu nit
      14. Artem Kaznatcheev‏ @kaznatcheev 5. ožu 2019.
        • Prijavi Tweet

        If you want to construct your own hard semi-smooth landscapes, just apply the below recursion starting with any smooth fitness landscape. [12/n]pic.twitter.com/SsZ0newXq6

        1 reply 1 proslijeđeni tweet 5 korisnika označava da im se sviđa
        Prikaži ovu nit
      15. Artem Kaznatcheev‏ @kaznatcheev 5. ožu 2019.
        • Prijavi Tweet

        We can also show hardness for random fitter-mutant SSWM dynamics. Construction is more complicated but correspondence to AUSOs lets me use exiting results about simplex algorithms (from Matousek & Szabo: https://www.sciencedirect.com/science/article/pii/S0001870805001738 …) to get an exponential lower bound on length [13/n].pic.twitter.com/Sh9puqQb9k

        1 reply 0 proslijeđenih tweetova 5 korisnika označava da im se sviđa
        Prikaži ovu nit
      16. Artem Kaznatcheev‏ @kaznatcheev 5. ožu 2019.
        • Prijavi Tweet

        But real fitness landscapes are believed to be rugged/multi-peaked (e.g. see landscape from https://www.pnas.org/content/106/29/12025 …): more complicated than semi-smooth! For rugged landscapes, we can prove even more surprising results. So I'll continue 2nd half of the paper after sleep [14/n].pic.twitter.com/JtsDDEL9Pe

        1 reply 2 proslijeđena tweeta 10 korisnika označava da im se sviđa
        Prikaži ovu nit
      17. Artem Kaznatcheev‏ @kaznatcheev 6. ožu 2019.
        • Prijavi Tweet

        With new day, let's continue thread with 2nd half of paper & be more concrete. For rugged landscapes, I consider a popular model of fitness landscapes where the amount of epistasis can be tuned: the NK-model introduced in 1987 by Kauffman & Levin [15/n]: https://www.sciencedirect.com/science/article/pii/S0022519387800292 …pic.twitter.com/TNXVZagsaa

        1 reply 1 proslijeđeni tweet 3 korisnika označavaju da im se sviđa
        Prikaži ovu nit
      18. Artem Kaznatcheev‏ @kaznatcheev 6. ožu 2019.
        • Prijavi Tweet

        I show that the NK-model is PLS-complete for K = 2 or higher: it is as hard to find a local fitness peak in these landscapes as for any polynomial local search problem. This is analogous to NP-completeness; i.e. NP-c to global peaks is as PLS-c to local peaks. [16/n]

        1 reply 1 proslijeđeni tweet 3 korisnika označavaju da im se sviđa
        Prikaži ovu nit
      19. Artem Kaznatcheev‏ @kaznatcheev 6. ožu 2019.
        • Prijavi Tweet

        This means (because the reduction has a certain form) that there are fitness landscapes and initial genotypes where every single adaptive path to any local peak is of exponential length: i.e. the landscape is hard for all imaginable adaptive dynamics. [17/n]pic.twitter.com/CsCgim3NQM

        1 reply 1 proslijeđeni tweet 1 korisnik označava da mu se sviđa
        Prikaži ovu nit
      20. Artem Kaznatcheev‏ @kaznatcheev 6. ožu 2019.
        • Prijavi Tweet

        But this goes beyond adaptive dynamics! Given standard #cstheory conjectures (PLS != FP): there exists no algorithm that can find a local fitness peak in polynomial time. Even if evolution goes through valleys, jumps around, etc, etc. – it still won’t find any local peak. [18/n]

        1 reply 3 proslijeđena tweeta 1 korisnik označava da mu se sviđa
        Prikaži ovu nit
      21. Artem Kaznatcheev‏ @kaznatcheev 6. ožu 2019.
        • Prijavi Tweet

        On these hardest fitness landscapes, evolution will be in perpetual maladaptive disequilibrium. The population will always have nearby adaptive mutants available. [19/n]

        1 reply 2 proslijeđena tweeta 1 korisnik označava da mu se sviđa
        Prikaži ovu nit
      22. Artem Kaznatcheev‏ @kaznatcheev 6. ožu 2019.
        • Prijavi Tweet

        This transforms transient results like @s_hammarlund, @evokerr et al.'s Hankshaw effect for cooperation (https://onlinelibrary.wiley.com/doi/abs/10.1111/evo.12928 …) into perpetual results: Hankshaw can maintain cooperation for-effectively-ever on hard landscapes without using just-in-time env. change. [20/n]

        2 proslijeđena tweeta 10 korisnika označava da im se sviđa
        Prikaži ovu nit
      23. Artem Kaznatcheev‏ @kaznatcheev 6. ožu 2019.
        • Prijavi Tweet

        Similarly w/ Baldwin effect & costly learning. By being away from local fitness peak, learning can remain adaptive even if it carries small start-up fitness cost. So if we're looking for hard landscapes among animals, ones with cooperation & learning are good candidates [21/n].

        1 reply 2 proslijeđena tweeta 5 korisnika označava da im se sviđa
        Prikaži ovu nit
      24. Artem Kaznatcheev‏ @kaznatcheev 6. ožu 2019.
        • Prijavi Tweet

        But why should we care about local peaks? Maybe we just want approximate local peaks. After all, biology is probably too messy for exact peaks anyways. #cstheory can help us here, too. Through the study of approximation algorithms. [22/n]

        1 reply 0 proslijeđenih tweetova 4 korisnika označavaju da im se sviđa
        Prikaži ovu nit
      25. Artem Kaznatcheev‏ @kaznatcheev 6. ožu 2019.
        • Prijavi Tweet

        Evolution can find approximate peaks for moderate approx. factors (time polynomial in 1/s) but not for small factors (impossible for time poly. in ln(1/s)). This lets us reason about the decay in the selection coefficient over evolutionary trajectories & fitness traces. [23/n]pic.twitter.com/2UfWLiw8jn

        1 reply 0 proslijeđenih tweetova 3 korisnika označavaju da im se sviđa
        Prikaži ovu nit
      26. Artem Kaznatcheev‏ @kaznatcheev 6. ožu 2019.
        • Prijavi Tweet

        I show: on hard landscapes, selection coefficients decay as power law, but can’t decay as fast as exponential. Qualitatively matches slow decay in selection coeff. & unbounded fitness growth observed by @MikeWiser2, Ribeck & @RELenski in the LTEE [24/n]:http://science.sciencemag.org/content/342/6164/1364 …

        1 reply 2 proslijeđena tweeta 5 korisnika označava da im se sviđa
        Prikaži ovu nit
      27. Artem Kaznatcheev‏ @kaznatcheev 6. ožu 2019.
        • Prijavi Tweet

        Is there a single simple conclusion from all of this? Probably not. But I would like to leave with one final message. We should not imagine hard fitness landscapes as mountain ranges. Instead, we should imagine them as winding mazes: http://www.genetics.org/content/early/2019/03/04/genetics.119.302000 … [25/25]pic.twitter.com/1gzK6S60IG

        Randy Olson i Genetics Society of America
        13 proslijeđenih tweetova 27 korisnika označava da im se sviđa
        Prikaži ovu nit
      28. Artem Kaznatcheev‏ @kaznatcheev 9. ožu 2019.
        • Prijavi Tweet

        If you prefer audio/visual recaps: my presentation of the preliminary version of this work (focused on the CS) at the @SimonsInstitute in 2014 is available online under the old title of "Complexity of Evolutionary Equilibria in Static Fitness Landscapes":https://www.youtube.com/watch?v=nDNsgDzJOiM …

        1 reply 2 proslijeđena tweeta 8 korisnika označava da im se sviđa
        Prikaži ovu nit
      29. Artem Kaznatcheev‏ @kaznatcheev 1. tra 2019.
        • Prijavi Tweet

        Last week, I gave a broader context for thought on local maxima in fields beyond evo. bio: https://egtheory.wordpress.com/2019/03/29/fallacy-of-fixed-points/ … I tried to find some 'historic' roots in recent debates in economic literature. Or as @PabloRedux has eloquently summarized the Q: an inefficient-market hypothesis?

        1 reply 4 proslijeđena tweeta 3 korisnika označavaju da im se sviđa
        Prikaži ovu nit
      30. Artem Kaznatcheev‏ @kaznatcheev 12. tra 2019.
        • Prijavi Tweet

        My post on local maxima and the fallacy of jumping to fixed-points has been pretty well received on /r/philosophy. This is surprising: https://www.reddit.com/r/philosophy/comments/bbyy9i/local_maxima_and_the_fallacy_of_jumping_to/ … There is some interesting discussion in the thread. Some adds important points & some identifies common misreadings. Fun

        1 reply 1 proslijeđeni tweet 4 korisnika označavaju da im se sviđa
        Prikaži ovu nit
      31. Artem Kaznatcheev‏ @kaznatcheev 12. tra 2019.
        • Prijavi Tweet

        After a day at the top of /r/philosophy, the post & associated attention has now fallen off. Some enjoyable discussion was had along the way. It seems many view cstheory results about some field X of natural science as part of the 'complexity science' challenge to X. I don't.

        1 reply 0 proslijeđenih tweetova 4 korisnika označavaju da im se sviđa
        Prikaži ovu nit
      32. Još 5 drugih odgovora

    Čini se da učitavanje traje već neko vrijeme.

    Twitter je možda preopterećen ili ima kratkotrajnih poteškoća u radu. Pokušajte ponovno ili potražite dodatne informacije u odjeljku Status Twittera.

      Sponzorirani tweet

      false

      • © 2020 Twitter
      • O Twitteru
      • Centar za pomoć
      • Uvjeti
      • Pravila o privatnosti
      • Imprint
      • Kolačići
      • Informacije o oglasima