Daniel Piker

@KangarooPhysics

Vrijeme pridruživanja: travanj 2011.

Medijski sadržaj

  1. 9. sij
    Odgovor korisniku/ci
  2. 30. pro 2019.
    Odgovor korisnicima i sljedećem broju korisnika:

    Ok, I think this one is topologically different. Highly distorted angles, but still all hexahedra, meeting face to face.

  3. 30. pro 2019.

    If you don't care about angles, one option is like this:

  4. 23. pro 2019.
    Odgovor korisnicima
  5. 23. pro 2019.
    Odgovor korisnicima
  6. 23. pro 2019.
    Odgovor korisnicima i sljedećem broju korisnika:

    Here's another way of showing it for N=3. View full size to see the grids

  7. 23. pro 2019.
    Odgovor korisnicima i sljedećem broju korisnika:

    The squares of the tilted/scaled grid which contain N points of the unit grid are shaded (below a zoom in for N=11). Some combinations of angle/scale produce these interesting *almost* repeating patterns

  8. 23. pro 2019.
    Odgovor korisnicima i sljedećem broju korisnika:

    Here the squares containing 11 points

  9. 23. pro 2019.
    Odgovor korisnicima i sljedećem broju korisnika:

    The patterns that show up in imperfect solutions are quite fascinating - here's a scaled and rotated grid with all the squares containing 7 points from the lattice shaded

  10. 22. pro 2019.
    Odgovor korisnicima i sljedećem broju korisnika:

    ...and here's one where they all contain 5 Does a grid like this exist for 3? or 7?

  11. 22. pro 2019.
    Odgovor korisnicima i sljedećem broju korisnika:

    Here's one where *most* of the squares contain 5 points of the lattice

  12. 22. pro 2019.
    Odgovor korisnicima

    I wonder about the case with not just a single square but a grid where each square contains N points of the lattice?

  13. 18. pro 2019.
    Odgovor korisniku/ci

    I see - I would like to improve the way it handles hard constraints + make it easier to set up so they are enforced strictly at all stages of the movement + better feedback given when overconstrained. Accurate linkage simulation is already possible now with right setup though:

  14. 18. pro 2019.
    Odgovor korisniku/ci

    What error? I think Kangaroo works quite well for linkages already. I'm interested to hear about where you see the limitations.

  15. 17. pro 2019.
    Odgovor korisniku/ci

    You might like this article by Johannes Schönke and Eliot Fried:

  16. 17. pro 2019.
    Odgovor korisniku/ci
  17. 13. pro 2019.
    Odgovor korisniku/ci
  18. 12. pro 2019.
    Odgovor korisnicima
  19. 11. pro 2019.

    Here's what I get by changing the initial position of one mass a tiny amount:

  20. 11. pro 2019.
    Odgovor korisnicima

    reading more about this-found lots of nice work on planar case (including this notebook from ). Also learned of free-fall orbits where they all start at rest and oscillate on an open curve Still not finding much about non-planar orbits though.

Čini se da učitavanje traje već neko vrijeme.

Twitter je možda preopterećen ili ima kratkotrajnih poteškoća u radu. Pokušajte ponovno ili potražite dodatne informacije u odjeljku Status Twittera.

    Možda bi vam se svidjelo i ovo:

    ·