Yi-Ching (Janet) Huang

@janetyc

Postdoc at TU/e, Future Everyday. Human-AI Co-Learning, Crowdsourcing, Creativity & Learning Support, CSCW. HCI & AI researcher.

Taiwan
Vrijeme pridruživanja: ožujak 2007.

Tweetovi

Blokirali ste korisnika/cu @janetyc

Jeste li sigurni da želite vidjeti te tweetove? Time nećete deblokirati korisnika/cu @janetyc

  1. proslijedio/la je Tweet

    Supporting ’s inclusion in is “communicating misinformation?” 🙈🙉🙊 & then the Taiwan issue will just disappear? No! Taiwan will remain an air traffic hub & the only way to ensure safety is inclusion. JW

    Poništi
  2. proslijedio/la je Tweet
    23. sij
    Prikaži ovu nit
    Poništi
  3. proslijedio/la je Tweet
    23. sij

    SQuINTing at VQA Models: Interrogating VQA Models with Sub-Questions by Ramprasaath R. Selvaraju et al. including , ,

    Poništi
  4. proslijedio/la je Tweet
    10. sij

    Computers pervade more and more of our lives and society, but what does it look like for teams of humans and computer-based agents to collaborate effectively? .

    Poništi
  5. proslijedio/la je Tweet
    6. sij

    Computing education researchers: want to influence how your ICER 2020 submissions are reviewed? Comment on our reviewing guide, required reading for ICER reviewers and meta-reviewers. We'll be making revisions based on feedback throughout January:

    Poništi
  6. proslijedio/la je Tweet
    6. sij

    People were better at assessing the accuracy of an algorithm when its response time was slower. Here is a summary of a new paper by , , , and :

    Poništi
  7. proslijedio/la je Tweet

    AI has largely moved from symbol-based systems to artificial neural network–based models. TP-Transformer and TP-N2F show how a neurosymbolic approach that merges the two via neural symbols can enhance performance and interpretability:

    Poništi
  8. 21. pro 2019.
    Poništi
  9. proslijedio/la je Tweet
    18. pro 2019.

    My AI art online gallery for 2019 is finally live 🎉 🎉🎉 Check out all the art, music and design projects submitted to our Workshop😍

    , , i još njih 7
    Poništi
  10. proslijedio/la je Tweet
    18. pro 2019.

    Introducing Generative Teaching Networks - they generate synthetic data optimized to train learners as fast as possible - a new way to generate data for architecture search & more! Led by w/ , , &

    Poništi
  11. 18. pro 2019.
    Poništi
  12. proslijedio/la je Tweet
    17. pro 2019.
    Poništi
  13. 17. pro 2019.
    Poništi
  14. proslijedio/la je Tweet
    12. pro 2019.

    If you still have the energy, come to our poster on program synthesis with learned code idioms today 5-7pm, #168. Work by , strongly supervised by and weakly supervised by and me. It's a fun trick to improve generation of things with common substructures.

    Poster giving overview of https://papers.nips.cc/paper/9265-program-synthesis-and-semantic-parsing-with-learned-code-idioms
    Poništi
  15. proslijedio/la je Tweet
    12. pro 2019.

    Just posted a paper on biorxiv about using latent models to visualize, quantify, and synthesize animal vocalizations with examples from 29 different species including humpback whale, songbirds, monkeys, humans, mice, and bats. 

    Prikaži ovu nit
    Poništi
  16. proslijedio/la je Tweet
    15. pro 2019.

    What a week 🧠🤓💻! I loved meeting so many of you at - the ML community is truly wonderful. Checkout all my collected visual notes ✍️ & feel free to share:

    Poništi
  17. proslijedio/la je Tweet
    14. pro 2019.

    Out: Winning a Turing Award for inventing the ConvNet In: Co-presenting invited talk @ via tweet. Lesson: “Lesson: don’t cancel your workshop talk last minute!” this morning w : Watch these posters get .

    Prikaži ovu nit
    Poništi
  18. proslijedio/la je Tweet
    16. srp 2019.

    A short introduction to the project to study and build an autonomous artificial artist

    Prikaži ovu nit
    Poništi
  19. proslijedio/la je Tweet
    10. pro 2019.

    . psych prof on the 5 things machine learning researchers should know about humans. Fascinating insights plus video of babies. Also AFOG gets a mention!

    Poništi
  20. proslijedio/la je Tweet
    30. lis 2019.

    Tadaa 🎉 happy to announce the little demo for our paper on “Seeing what a GAN cannot create”. Joined work of and Paper: Demo:

    Prikaži ovu nit
    Poništi

Čini se da učitavanje traje već neko vrijeme.

Twitter je možda preopterećen ili ima kratkotrajnih poteškoća u radu. Pokušajte ponovno ili potražite dodatne informacije u odjeljku Status Twittera.

    Možda bi vam se svidjelo i ovo:

    ·