[1/4] “Frame dragging” by a rotating black hole is a very cool phenomenon — and less arcane than it’s often portrayed to be. Suppose you woke up in some kind of space habitat, with a dome that showed you a sky full of stars that remained perfectly still. You feel 1 gee’s weight.
-
-
[4/4] Fine print: alas, *no* choice of black hole mass M, black hole rotation, and distance R from the hole could make the distance the ball swerved visible to the naked eye, if weight is 1 gee. Frame dragging per se can be made arbitrarily large, but: ω < g / [c (R/M–1)]
Prikaži ovu nit -
I inadvertently used a mix of conventional units (ω, g and c) and geometric units (R and M). In geometric units, G=c=1, and mass and distance have the same units, so R/M is dimensionless. I should have written: ω < g / [c (2R/R_s–1)] R_s = 2GM/c^2
Prikaži ovu nit
Kraj razgovora
Novi razgovor -
Čini se da učitavanje traje već neko vrijeme.
Twitter je možda preopterećen ili ima kratkotrajnih poteškoća u radu. Pokušajte ponovno ili potražite dodatne informacije u odjeljku Status Twittera.