Skip to content
By using Twitter’s services you agree to our Cookies Use. We and our partners operate globally and use cookies, including for analytics, personalisation, and ads.
  • Home Home Home, current page.
  • About

Saved searches

  • Remove
  • In this conversation
    Verified accountProtected Tweets @
Suggested users
  • Verified accountProtected Tweets @
  • Verified accountProtected Tweets @
  • Language: English
    • Bahasa Indonesia
    • Bahasa Melayu
    • Català
    • Čeština
    • Dansk
    • Deutsch
    • English UK
    • Español
    • Filipino
    • Français
    • Hrvatski
    • Italiano
    • Magyar
    • Nederlands
    • Norsk
    • Polski
    • Português
    • Română
    • Slovenčina
    • Suomi
    • Svenska
    • Tiếng Việt
    • Türkçe
    • Ελληνικά
    • Български език
    • Русский
    • Српски
    • Українська мова
    • עִבְרִית
    • العربية
    • فارسی
    • मराठी
    • हिन्दी
    • বাংলা
    • ગુજરાતી
    • தமிழ்
    • ಕನ್ನಡ
    • ภาษาไทย
    • 한국어
    • 日本語
    • 简体中文
    • 繁體中文
  • Have an account? Log in
    Have an account?
    · Forgot password?

    New to Twitter?
    Sign up
fchollet's profile
François Chollet
François Chollet
François Chollet
Verified account
@fchollet

Tweets

François CholletVerified account

@fchollet

Deep learning @google. Creator of Keras. Author of 'Deep Learning with Python'. Opinions are my own.

United States
fchollet.com
Joined August 2009

Tweets

  • © 2021 Twitter
  • About
  • Help Center
  • Terms
  • Privacy policy
  • Cookies
  • Ads info
Dismiss
Previous
Next

Go to a person's profile

Saved searches

  • Remove
  • In this conversation
    Verified accountProtected Tweets @
Suggested users
  • Verified accountProtected Tweets @
  • Verified accountProtected Tweets @

Promote this Tweet

Block

  • Tweet with a location

    You can add location information to your Tweets, such as your city or precise location, from the web and via third-party applications. You always have the option to delete your Tweet location history. Learn more

    Your lists

    Create a new list


    Under 100 characters, optional

    Privacy

    Copy link to Tweet

    Embed this Tweet

    Embed this Video

    Add this Tweet to your website by copying the code below. Learn more

    Add this video to your website by copying the code below. Learn more

    Hmm, there was a problem reaching the server.

    By embedding Twitter content in your website or app, you are agreeing to the Twitter Developer Agreement and Developer Policy.

    Preview

    Why you're seeing this ad

    Log in to Twitter

    · Forgot password?
    Don't have an account? Sign up »

    Sign up for Twitter

    Not on Twitter? Sign up, tune into the things you care about, and get updates as they happen.

    Sign up
    Have an account? Log in »

    Two-way (sending and receiving) short codes:

    Country Code For customers of
    United States 40404 (any)
    Canada 21212 (any)
    United Kingdom 86444 Vodafone, Orange, 3, O2
    Brazil 40404 Nextel, TIM
    Haiti 40404 Digicel, Voila
    Ireland 51210 Vodafone, O2
    India 53000 Bharti Airtel, Videocon, Reliance
    Indonesia 89887 AXIS, 3, Telkomsel, Indosat, XL Axiata
    Italy 4880804 Wind
    3424486444 Vodafone
    » See SMS short codes for other countries

    Confirmation

     

    Welcome home!

    This timeline is where you’ll spend most of your time, getting instant updates about what matters to you.

    Tweets not working for you?

    Hover over the profile pic and click the Following button to unfollow any account.

    Say a lot with a little

    When you see a Tweet you love, tap the heart — it lets the person who wrote it know you shared the love.

    Spread the word

    The fastest way to share someone else’s Tweet with your followers is with a Retweet. Tap the icon to send it instantly.

    Join the conversation

    Add your thoughts about any Tweet with a Reply. Find a topic you’re passionate about, and jump right in.

    Learn the latest

    Get instant insight into what people are talking about now.

    Get more of what you love

    Follow more accounts to get instant updates about topics you care about.

    Find what's happening

    See the latest conversations about any topic instantly.

    Never miss a Moment

    Catch up instantly on the best stories happening as they unfold.

    1. François Chollet‏Verified account @fchollet 3 May 2018

      A common misconception about deep learning is that gradient descent is meant to reach the "global minimum" of the loss, while avoiding "local minima". In practice, a deep neural network that's anywhere close to the global minimum would be utterly useless (extremely overfit)

      12 replies 196 retweets 710 likes
      Show this thread
    2. Abubakar Abid‏ @abidlabs 3 May 2018
      Replying to @fchollet

      Would this be the case even when the loss function is regularized? Isn't the point of regularization to ensure that the minimum loss corresponds to weights that generalize?

      3 replies 0 retweets 18 likes
      François Chollet‏Verified account @fchollet 4 May 2018
      Replying to @abidlabs

      Absolutely not. Regularization seeks to steer optimization toward paths in parameter space that tend to generalize better, but it does not mean that going down to the global minimum would generalize (rather, earlier locations on the path will generalize better compared to no reg)

      8:56 AM - 4 May 2018
      • 6 Likes
      • GreatDragonian Son M Matthieu Poullet Petrônio Cândido 🇧🇷 Kevin Blansit
      1 reply 0 retweets 6 likes
        1. New conversation
        2. François Chollet‏Verified account @fchollet 4 May 2018
          Replying to @fchollet @abidlabs

          If that were the case, then you could keep training a regularized network indefinitely and never overfit, only memorizing the right amount of data! Such a regularization technique would be a major breakthrough (see other comment about IB).

          1 reply 0 retweets 6 likes
        3. Jairo Luciano‏ @jairo_luciano 4 May 2018
          Replying to @fchollet @abidlabs

          François, why do we need to regularize and still have models that are so big they need regularization? Why not just use smaller models and no regularization? (btw, I didn't know you had a book about DL, saw in the other tweet, very nice)

          2 replies 0 retweets 2 likes
        4. Show replies

      Loading seems to be taking a while.

      Twitter may be over capacity or experiencing a momentary hiccup. Try again or visit Twitter Status for more information.

        Promoted Tweet

        false

        • © 2021 Twitter
        • About
        • Help Center
        • Terms
        • Privacy policy
        • Cookies
        • Ads info