Tweetovi
- Tweetovi, trenutna stranica.
- Tweetovi i odgovori
- Medijski sadržaj
Blokirali ste korisnika/cu @debidatta
Jeste li sigurni da želite vidjeti te tweetove? Time nećete deblokirati korisnika/cu @debidatta
-
Prikvačeni tweet
Excited to share our work on self-supervised learning in videos. Our method, temporal cycle-consistency (TCC) learning, looks for similarities across videos to learn useful representations.
#CVPR2019#computervision Video: https://www.youtube.com/watch?v=iWjjeMQmt8E … Webpage: https://sites.google.com/corp/view/temporal-cycle-consistency/ …pic.twitter.com/v02Vckd7LYPrikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Debidatta Dwibedi proslijedio/la je Tweet
Enabling people to converse with chatbots about anything has been a passion of a lifetime for me, and I'm sure of others as well. So I'm very thankful to be able to finally share our results with you all. Hopefully, this will help inform efforts in the area. (1/4)https://twitter.com/lmthang/status/1222234237262159872 …
Prikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Debidatta Dwibedi proslijedio/la je Tweet
Check out Meena, a new state-of-the-art open-domain conversational agent, released along with a new evaluation metric, the Sensibleness and Specificity Average, which captures basic, but important attributes for normal conversation. Learn more below!https://goo.gle/36zB8Wj
Prikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Debidatta Dwibedi proslijedio/la je Tweet
Excited to announce our new work! "gradSLAM: Dense SLAM meets automatic differentiation" We leverage the power of autodiff frameworks to make dense SLAM fully differentiable. Paper: https://arxiv.org/abs/1910.10672 Project page: http://montrealrobotics.ca/gradSLAM/ Video: https://www.youtube.com/watch?v=2ygtSJTmo08&t=1s …pic.twitter.com/vhCS1faDVt
Prikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Debidatta Dwibedi proslijedio/la je Tweet
Our
@ICCV19 paper "EPIC-Fusion: Audio-Visual Temporal Binding for Egocentric Action Recognition" now on Arxiv. With@VILaboratory@e_kazakos and@Oxford_VGG@NagraniArsha and AZ. Video: https://youtu.be/VzoaKsDvv1o Arxiv: https://arxiv.org/abs/1908.08498 Project: https://arxiv.org/abs/1908.08498 pic.twitter.com/IISKB2yaQB
Prikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Debidatta Dwibedi proslijedio/la je Tweet
My new work with
@LukeZettlemoyer on accelerated training of sparse networks from random weights to dense performance levels — no retraining required! Paper: https://arxiv.org/abs/1907.04840 Blog post: https://timdettmers.com/2019/07/11/sparse-networks-from-scratch/ … Code: https://github.com/TimDettmers/sparse_learning …pic.twitter.com/2UDdhhWZhG
Hvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Debidatta Dwibedi proslijedio/la je Tweet
And now, #DeepLabCut 2.0 is published! https://rdcu.be/bHpHN@NatureProtocols 3D Markerless pose estimation of user-defined points across any species.#FreeSoftware#OpenSource Full step-by-step guide,@GoogleColab Notebooks, & more!
co-1st: @TrackingPlumes &@meet10maypic.twitter.com/4f1ndll55OPrikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Debidatta Dwibedi proslijedio/la je Tweet
Great post on the intuition behind the transformer. I hadn't ever thought about how the CNN could be viewed as a special case of a transformer!https://nostalgebraist.tumblr.com/post/185326092369/the-transformer-explained …
Hvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Debidatta Dwibedi proslijedio/la je Tweet
It turns out that YouTube has tons of videos of people pretending to be statues. This is great for learning about the 3D shape of people! Cool new work from
@zl548 at CVPR19 from his Google internship. https://mannequin-depth.github.io/ pic.twitter.com/FsmZkgP7BtHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Debidatta Dwibedi proslijedio/la je Tweet
My slides from the
@OpenAI robotics symposium, the main message is self-supervision on lots of unlabeled play data is an effective recipe for robotics, and we propose multiple methods to implement this recipe for vision and control:https://docs.google.com/presentation/d/145wBH7TEJoEclVzE1YKTihqIXWMljeNIA6ozwMZLb3Q/edit?usp=sharing …Prikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Debidatta Dwibedi proslijedio/la je Tweet
Our new paper on fast and robust animal pose estimation methods—developed in our quest to understand how animals sync and swarm—now available on
@biorxivpreprint! https://www.biorxiv.org/content/10.1101/620245v1 … Code will be available soon. Keep an eye out for DeepPoseKit at https://github.com/jgraving/deepposekit …pic.twitter.com/Q4BhDwJMI3Prikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Debidatta Dwibedi proslijedio/la je Tweet
New blog post: "A Recipe for Training Neural Networks" https://karpathy.github.io/2019/04/25/recipe/ … a collection of attempted advice for training neural nets with a focus on how to structure that process over time
Hvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
This is joint work with
@yusufaytar , Jonathan Tompson,@psermanet and Andrew Zisserman.Prikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Hvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi
-
Hvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi
-
Some applications of the per-frame embeddings learned using TCC: 1. Unsupervised video alignmentpic.twitter.com/bAMpiOIRwd
Prikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Self-supervised methods are quite useful in the few-shot setting. Consider the action phase classification task. With only 1 labeled video TCC achieves similar performance to vanilla supervised learning models trained with ~50 videos.pic.twitter.com/Xu26Tpr68y
Prikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
TCC discovers the phases of an action without additional labels. In this video, we retrieve nearest neighbors in the embedding space to frames in the reference video. In spite of many variations, TCC maps semantically similar frames to nearby points in the embedding space.pic.twitter.com/k4o4y4o6gE
Prikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
ML highlights from the paper: 1. Cycle-consistency loss applied directly on low dimensional embeddings (without GAN / decoder). 2. Soft-nearest neighbors to find correspondences across videos. Training method:pic.twitter.com/GnD6jw9ZSX
Prikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
For a frame in video 1, TCC finds the nearest neighbor (NN) in video 2. To go back to video 1, we find the nearest neighbor of NN in video 1. If we came back to the frame we started from, the frames are cycle-consistent. TCC minimizes this cycle-consistency error.pic.twitter.com/9dUqwI4Ao0
Prikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi
Čini se da učitavanje traje već neko vrijeme.
Twitter je možda preopterećen ili ima kratkotrajnih poteškoća u radu. Pokušajte ponovno ili potražite dodatne informacije u odjeljku Status Twittera.