Cihang Xie

@cihangxie

Ph.D. student at Johns Hopkins

Baltimore, MD
Vrijeme pridruživanja: srpanj 2014.

Tweetovi

Blokirali ste korisnika/cu @cihangxie

Jeste li sigurni da želite vidjeti te tweetove? Time nećete deblokirati korisnika/cu @cihangxie

  1. proslijedio/la je Tweet
    3. pro 2019.

    This video explains AdvProp from ! This technique leverages Adversarial Examples for ImageNet classification by using separate Batch Normalization layers for clean and adversarial mini-batches.

    Poništi
  2. proslijedio/la je Tweet
    25. stu 2019.

    Can adversarial examples improve image recognition? Check out our recent work: AdvProp, achieving ImageNet top-1 accuracy 85.5% (no extra data) with adversarial examples! Arxiv: Checkpoints:

    Poništi
  3. proslijedio/la je Tweet
    25. stu 2019.
    Prikaži ovu nit
    Poništi
  4. proslijedio/la je Tweet
    25. stu 2019.

    AdvProp improves accuracy for a wide range of image models, from small to large. But the improvement seems bigger when the model is larger.

    Prikaži ovu nit
    Poništi
  5. proslijedio/la je Tweet
    25. stu 2019.

    As a data augmentation method, adversarial examples are more general than other image processing techniques. So I expect AdvProp to be useful everywhere (language, structured data etc.), not just image recognition.

    Prikaži ovu nit
    Poništi
  6. proslijedio/la je Tweet
    25. stu 2019.

    Many of us tried to use adversarial examples as data augmentation and observed a drop in accuracy. And it seems that simply using two BatchNorms overcomes this mysterious drop in accuracy.

    Prikaži ovu nit
    Poništi
  7. proslijedio/la je Tweet
    25. stu 2019.

    AdvProp: One weird trick to use adversarial examples to reduce overfitting. Key idea is to use two BatchNorms, one for normal examples and another one for adversarial examples. Significant gains on ImageNet and other test sets.

    Prikaži ovu nit
    Poništi
  8. proslijedio/la je Tweet
    8. velj 2019.

    FAIR has released code for the robust ImageNet model by Cihang Xie et al:

    Poništi
  9. 12. pro 2017.
    Poništi
  10. proslijedio/la je Tweet
    8. pro 2017.

    Cihang Xie presenting the runner-up defense: randomization at test time

    Poništi
  11. 12. kol 2015.

    Using uberPOOL, I saved $12.42. Get ready for a summer with a weekly surprise from .

    Poništi

Čini se da učitavanje traje već neko vrijeme.

Twitter je možda preopterećen ili ima kratkotrajnih poteškoća u radu. Pokušajte ponovno ili potražite dodatne informacije u odjeljku Status Twittera.

    Možda bi vam se svidjelo i ovo:

    ·