Tweetovi
- Tweetovi, trenutna stranica.
- Tweetovi i odgovori
- Medijski sadržaj
Blokirali ste korisnika/cu @brandondamos
Jeste li sigurni da želite vidjeti te tweetove? Time nećete deblokirati korisnika/cu @brandondamos
-
Brandon Amos proslijedio/la je Tweet
Happy to present GradientDICE w/ Bo,
@shimon8282, fixing key problems of GenDICE, the current state-of-the-art for behaviour-agnostic density-ratio-learning-based off-policy evaluation. https://arxiv.org/abs/2001.11113@whi_rlpic.twitter.com/XyJbRduCew
Hvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Brandon Amos proslijedio/la je Tweet
We're standardizing OpenAI's deep learning framework on PyTorch to increase our research productivity at scale on GPUs (and have just released a PyTorch version of Spinning Up in Deep RL): https://openai.com/blog/openai-pytorch/ …pic.twitter.com/lgvqDdWDoB
Hvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Brandon Amos proslijedio/la je Tweet
Humans learn from curriculum since birth. We can learn complicated math problems because we have accumulated enough prior knowledge. This could be true for training a ML/RL model as well. Let see how curriculum can help an RL agent learn:https://lilianweng.github.io/lil-log/2020/01/29/curriculum-for-reinforcement-learning.html …
Hvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Brandon Amos proslijedio/la je Tweet
New Medium article about my work w/
@kchonyc and@sleepinyourhat on extracting representations of different senses of polysemic words from deep contextualized models like BERT, ELMo, and fastText.
https://bit.ly/2RzVF8I
(+ code on GitHub)Prikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Brandon Amos proslijedio/la je Tweet
*Our paper diagnosing problems in fair ML now on arXiv!* https://arxiv.org/abs/2001.09773 . Took a few weeks, b/c our interdisciplinary collaboration broke the paper categorization system.
#aies2020Prikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Brandon Amos proslijedio/la je Tweet
New paper: Towards a Human-like Open-Domain Chatbot. Key takeaways: 1. "Perplexity is all a chatbot needs" ;) 2. We're getting closer to a high-quality chatbot that can chat about anything Paper: https://arxiv.org/abs/2001.09977 Blog: https://ai.googleblog.com/2020/01/towards-conversational-agent-that-can.html …pic.twitter.com/5SOBa58qx3
Prikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Brandon Amos proslijedio/la je Tweet
Ensemble Rejection Sampling https://arxiv.org/abs/2001.09188 with
@GeorgeDeligian9 and Sylvain Rubenthaler: Rejection sampling meets dynamic programming - exact simulation from the posterior of states of a class of continuous state HMM using randomized finite state HMM.Hvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Brandon Amos proslijedio/la je Tweet
Interesting looking work that is inspired by Minkowski space (https://en.wikipedia.org/wiki/Minkowski_space …) which treats space-time as a single entity. It is also open source.https://twitter.com/ChrisChoy208/status/1221812576222232578 …
Hvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Brandon Amos proslijedio/la je Tweet
Quaternions and Euler angles are discontinuous and difficult for neural networks to learn. They show 3D rotations have continuous representations in 5D and 6D, which are more suitable for learning. i.e. regress two vectors and apply Graham-Schmidt (GS). https://arxiv.org/abs/1812.07035 pic.twitter.com/fXUF3sgkTT
Prikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Brandon Amos proslijedio/la je Tweet
Teaching Deep Unsupervised Learning (2nd edition) at
@UCBerkeley this semester. You can follow along here: https://sites.google.com/view/berkeley-cs294-158-sp20/home … Instructor Team:@peterxichen ,@Aravind7694 ,@hojonathanho , Wilson Yan, Alex Li,@pabbeel YouTube, PDF, and Google Slides for ease of re-usepic.twitter.com/VTvffsEjHf
Hvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Brandon Amos proslijedio/la je Tweet
This semester I'm teaching a new PhD course "Economics, AI, and Optimization." I'll be covering how AI/Opt methods enable large-scale economic solution concepts. http://www.columbia.edu/~ck2945/courses/s20_8100/ … I'm planning to share lectures notes that I hope will be of broader interest.
Prikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Brandon Amos proslijedio/la je Tweet
This is one of the strongest papers I co-authored, with unique results on robust point cloud registration and a manifesto of certifiable perception: Paper: https://arxiv.org/abs/2001.07715 Code: https://github.mit.edu/SPARK/TEASER-plusplus … Video: https://youtu.be/xib1RSUoeeQ Kudos to Hank and Jingnan!
#mitSparkLabHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Brandon Amos proslijedio/la je Tweet
Super excited to share new work “TEASER: Fast and Certifiable Point Cloud Registration” with Jingnan Shi and
@lucacarlone1 Paper: https://arxiv.org/pdf/2001.07715.pdf … Code: https://github.com/MIT-SPARK/TEASER-plusplus … TEASER is the first algorithm of its kind in many practical and theoretical aspects: https://twitter.com/Deep__AI/status/1220362700926017536 …pic.twitter.com/6nb5rQwfdb
Prikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Brandon Amos proslijedio/la je Tweet
My first experience with evolutionary robotics
Learning a neural-network-based controller of a robot with evolvable morphology. A great outcome from a collaboration with @GongjinLan,@matteo_phd, Fuda,@DiederikRo and@gusz_e! The arXiv version: https://arxiv.org/abs/2001.07804 pic.twitter.com/QaHRz4nJNM
Hvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Brandon Amos proslijedio/la je Tweet
Q-learning is difficult to apply when the number of available actions is large. We show that a simple extension based on amortized stochastic search allows Q-learning to scale to high-dimensional discrete, continuous or hybrid action spaces: https://arxiv.org/abs/2001.08116
Hvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Brandon Amos proslijedio/la je Tweet
A mixture of Gaussians model can be represented as a weighted points cloud (actually a measure) over the mean/covariance domain. Mixture fitting is a non-convex optimization problem. https://en.wikipedia.org/wiki/Mixture_model …pic.twitter.com/PFAesnpfko
Hvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Brandon Amos proslijedio/la je Tweet
New results on non-stochastic control without knowing the system! https://arxiv.org/abs/1911.12178 joint work with
@ShamKakade6 and Karan Singh. You may notice the name is a tribute to one of my favorite papers of all times by Auer, Cesa-Bianchi, Freund and Schapire (a must read!)Hvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Brandon Amos proslijedio/la je Tweet
Excited to share PCGrad, a super simple & effective method for multi-task learning & multi-task RL: project conflicting gradients On Meta-World MT50, PCGrad can solve *2x* more tasks than prior methods https://arxiv.org/abs/2001.06782 w/ Tianhe Yu, S Kumar, Gupta,
@svlevine,@hausman_kpic.twitter.com/uTeUhULUTA
Hvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Brandon Amos proslijedio/la je Tweet
We are releasing a well-tuned and miniature
@PyTorch implementation of Soft Actor-Critic (https://arxiv.org/abs/1812.05905 ) together with@ikostrikov: https://github.com/denisyarats/pytorch_sac …. We test it on many continuous control tasks from the@DeepMind Control Suite and report the following results:pic.twitter.com/l8cLHX1mhL
Hvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Brandon Amos proslijedio/la je Tweet
Graduated Non-Convexity (GNC) is the counterpart for RANSAC: while RANSAC robustifies minimal solvers, GNC robustifies non-minimal solvers. The intriguing duality for robust estimation: {Consensus Maximization, Minimal Solver, RANSAC} and {M-estimation, Non minimal Solver, GNC}
https://twitter.com/lucacarlone1/status/1217324009106345984 …pic.twitter.com/EKOIhue2Lh
Hvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi
Čini se da učitavanje traje već neko vrijeme.
Twitter je možda preopterećen ili ima kratkotrajnih poteškoća u radu. Pokušajte ponovno ili potražite dodatne informacije u odjeljku Status Twittera.