And here is the teardrop's shape computed from this equation:pic.twitter.com/8OU5XadIjT
Za najbolje sučelje na Twitteru koristite Microsoft Edge ili instalirajte aplikaciju Twitter iz trgovine Microsoft Store.
U tweetove putem weba ili aplikacija drugih proizvođača možete dodati podatke o lokaciji, kao što su grad ili točna lokacija. Povijest lokacija tweetova uvijek možete izbrisati. Saznajte više
Dodajte ovaj Tweet na svoje web-mjesto kopiranjem koda u nastavku. Saznajte više
Dodajte ovaj videozapis na svoje web-mjesto kopiranjem koda u nastavku. Saznajte više
Integracijom Twitterova sadržaja u svoje web-mjesto ili aplikaciju prihvaćate Twitterov Ugovor za programere i Pravila za programere.
| Država | Kod | Samo za korisnike |
|---|---|---|
| Sjedinjene Američke Države | 40404 | (bilo koje) |
| Kanada | 21212 | (bilo koje) |
| Ujedinjeno Kraljevstvo | 86444 | Vodafone, Orange, 3, O2 |
| Brazil | 40404 | Nextel, TIM |
| Haiti | 40404 | Digicel, Voila |
| Irska | 51210 | Vodafone, O2 |
| Indija | 53000 | Bharti Airtel, Videocon, Reliance |
| Indonezija | 89887 | AXIS, 3, Telkomsel, Indosat, XL Axiata |
| Italija | 4880804 | Wind |
| 3424486444 | Vodafone | |
| » Pogledajte SMS kratke šifre za druge zemlje | ||
Vremenska crta mjesto je na kojem ćete provesti najviše vremena i bez odgode dobivati novosti o svemu što vam je važno.
Prijeđite pokazivačem preko slike profila pa kliknite gumb Pratim da biste prestali pratiti neki račun.
Kada vidite Tweet koji volite, dodirnite srce – to osobi koja ga je napisala daje do znanja da vam se sviđa.
Najbolji je način da podijelite nečiji Tweet s osobama koje vas prate prosljeđivanje. Dodirnite ikonu da biste smjesta poslali.
Pomoću odgovora dodajte sve što mislite o nekom tweetu. Pronađite temu koja vam je važna i uključite se.
Bez odgode pogledajte o čemu ljudi razgovaraju.
Pratite više računa da biste dobivali novosti o temama do kojih vam je stalo.
Bez odgode pogledajte najnovije razgovore o bilo kojoj temi.
Bez odgode pratite kako se razvijaju događaji koje pratite.
And here is the teardrop's shape computed from this equation:pic.twitter.com/8OU5XadIjT
That's a much neater equation than I expected! I wonder if there's a nice parametric form using elliptic functions à la https://arxiv.org/abs/1501.07157 (see e.g. Lemma 3.11)
Well, one can compute the curve's genus. I'm a bit too tired to attempt this right now. Another thing would be to understand why the equation given by elimination theory had another component (a circle with center (0,−1) and radius 2): this is probably obvious, but IDC.
The other component arises if you "flip" the smallest rhombus, collapsing the blue point to one of the other joints.pic.twitter.com/Jaew3aF7Vo
And unless I made a typo, the curve seems to be genus 3, unfortunately: x,y,z = PolynomialRing(QQ, ['x','y','z']).gens() qc = QuarticCurve(x^4 + 2*x^2*y^2 + y^4 + 10*x^2*z^2 - 6*y^2*z^2 + 8*y*z^3 - 3*z^4) qc.genus() ## result: 3
But now I'm a bit confused (and out of my depth): qc.geometric_genus() ## result: 0
Yes, that's the sort of thing I feared: there's probably a lot of fine print in Sage's genus computing commands about what it computes exactly and how. (Me, I can't even ever remember which is which between geometric and arithmetic genus, so…)
I believe the geometric genus is the one that matters re: parametrization; for some reason the QuarticCurve.genus() method gives the arithmetic genus (contradicting the behavior of Curve.genus(), of course...). Anyways, it turns out Sage has Curve.rational_parametrization() ...
And the output is: Scheme morphism: From: Projective Space of dimension 1 over Rational Field To: Projective Plane Curve over Rational Field defined by x^4 + 2*x^2*y^2 + y^4 + 10*x^2*z^2 - 6*y^2*z^2 + 8*y*z^3 - 3*z^4 ...
Defn: Defined on coordinates by sending (s : t) to (54*s^4 - 36*s^2*t^2 - 16*s*t^3 - 2*t^4 : -63*s^4 - 84*s^3*t - 26*s^2*t^2 - 20*s*t^3 + t^4 : 45*s^4 - 12*s^3*t + 22*s^2*t^2 + 4*s*t^3 + 5*t^4)
A final picture: parametric_plot( (2*(27 - 18*t^2 - 8*t^3 - t^4)/(45 - 12*t + 22*t^2 + 4*t^3 + 5*t^4), -(63 + 84*t + 26*t^2 + 20*t^3 - t^4)/(45 - 12*t + 22*t^2 + 4*t^3 + 5*t^4) ), (t,-1e5,1e5), plot_points=1e6)pic.twitter.com/2Wt2w12BBE
Just for fun, here's a "conformal neighborhood" of the curve. The small gap in the upper left is where |t|>100. I'm impressed that you guys could come up with both implicit and parametric formulae for the curve. I didn't know the latter was even possible.pic.twitter.com/r0pH4tRMSL
We got lucky, I think. The algebraic curve just happened to be genus 0 which means that it's secretly a (projective) line in disguise: https://en.wikipedia.org/wiki/Algebraic_curve#Rational_curves … I do wonder whether we could have figured out the genus from the linkage or some other way without relying on Sage.
Twitter je možda preopterećen ili ima kratkotrajnih poteškoća u radu. Pokušajte ponovno ili potražite dodatne informacije u odjeljku Status Twittera.