Babak

@bkeyvani

Pythonista, Data Analyst, Web Developer, Machine Learning enthusiast / Data Scientist-to-be, Technologist, Geek, Aspiring Robotisist, & Hobbyist

Vrijeme pridruživanja: siječanj 2009.

Tweetovi

Blokirali ste korisnika/cu @bkeyvani

Jeste li sigurni da želite vidjeti te tweetove? Time nećete deblokirati korisnika/cu @bkeyvani

  1. Prikvačeni tweet
    7. stu 2018.

    A computer scientists' geeky scary office decoration

    Poništi
  2. proslijedio/la je Tweet
    21. sij

    🚨New lecture series🚨 We've teamed up with to bring you the Deep Learning Lecture Series: 12 lectures covering a range of topics in Deep Learning - all led by DeepMind researchers, all free, and all open to everyone. Info & tickets:

    Prikaži ovu nit
    Poništi
  3. proslijedio/la je Tweet
    5. sij

    Drifting in an autonomous vehicle. Uses rotation rate of the vehicle’s velocity vector to track the path, while yaw acceleration is used to stabilize sideslip. Could help autonomous vehicles in emergencies. Fun results.

    Poništi
  4. proslijedio/la je Tweet
    11. pro 2019.

    🐼🤹‍♂️ pandas trick #94: Want to save a *massive* amount of memory? Fix your data types: ➡️ 'int8' for small integers ➡️ 'category' for strings with few unique values ➡️ 'Sparse' if most values are 0 or NaN More info: by

    Poništi
  5. proslijedio/la je Tweet

    This is amazing. I never thought my baby would have been used for such an important project! (Scanning of Rembrandt's Night Watch.)

    Poništi
  6. proslijedio/la je Tweet
    3. pro 2019.

    This year I wrote a book teaching Deep Learning - it's goal is to be the easiest intro possible In the book, each lesson builds a neural component *from scratch* in Each *from scratch* toy code example is in the Github below.

    Poništi
  7. proslijedio/la je Tweet
    29. stu 2019.

    I see a lot of "advanced Python" tutorials that talk about using map, filter, and reduce. Confession: I never use map, filter, or reduce. The first two are easily performed using list comprehensions or generator expressions. Common reductions are already there (sum, min, max).

    Prikaži ovu nit
    Poništi
  8. proslijedio/la je Tweet

    Fantastic free ebook on Linear Algebra written by my colleague Stephen Boyd at Stanford. Highly recommended. PDF: Page: Course:

    Poništi
  9. proslijedio/la je Tweet
    26. stu 2019.

    Sure, you could use _ as a throw-away variable in a Python for-loop. Yeah, you could definitely do that... like everyone else. Or you could just do this: >>> a = [ (0, 'Hello'), (1, 'Satan') ] >>> for {}[()], x in a: ... print(x) ... Hello Satan >>> Be different.

    Prikaži ovu nit
    Poništi
  10. proslijedio/la je Tweet

    The great robot apocalypse may not be so bad after all...

    Poništi
  11. proslijedio/la je Tweet
    23. stu 2019.

    Another interesting use of 's walrus operator is to compute differences between successive values in a data stream. This is the inverse of accumulate(): >>> data = [10, 14, 34, 49, 70, 77] >>> prev = 0; [-prev + (prev := x) for x in data] [10, 4, 20, 15, 21, 7]

    Prikaži ovu nit
    Poništi
  12. proslijedio/la je Tweet
    21. stu 2019.
    Poništi
  13. proslijedio/la je Tweet

    outranks Java as the second most popular language among 40 million developers on , and contribution to open-source grows across the globe:

    Poništi
  14. proslijedio/la je Tweet
    15. stu 2019.

    🐼🤹‍♂️ pandas trick #87: Problem: You have time series data that you want to aggregate by day, but you're only interested in weekends. Solution: 1. resample by day ('D') 2. filter by day of week (5=Saturday, 6=Sunday) See example 👇

    Poništi
  15. proslijedio/la je Tweet
    13. stu 2019.

    VS Code now supports editing and running Jupyter notebooks Honestly, I still did not switch from classical NB but better autocompletion and variable explorer seem tempting.

    Poništi
  16. proslijedio/la je Tweet
    11. stu 2019.

    Easy way to get stock market prices (and others economic data): >>> from pandas_datareader import data as wb >>> ticker_name = '^GSPC' >>> ticker = wb.DataReader(ticker_name, start='2010-1-1', data_source='yahoo') More info:

    Poništi
  17. proslijedio/la je Tweet
    8. stu 2019.

    With the walrus operator while True: line = fp.readline() if not line: break do_something(line) can be written as: while line := fp.readline(): do_something(line) More examples:

    Poništi
  18. proslijedio/la je Tweet
    6. stu 2019.

    🐼🤹‍♂️ pandas trick #81: Does your object column contain mixed data types? Use df.col.apply(type).value_counts() to check! See example 👇 Thanks to for inspiring this trick! Read more:

    Poništi
  19. proslijedio/la je Tweet
    5. stu 2019.

    🐼🤹‍♂️ pandas trick #80: Want to select multiple slices of columns from a DataFrame? 1. Use df.loc to select & pd.concat to combine 2. Slice df.columns & select using brackets 3. Use np.r_ to combine slices & df.iloc to select See example 👇

    Poništi
  20. proslijedio/la je Tweet
    4. stu 2019.

    🐼🤹‍♂️ pandas tricks is back! 🎉 Want to know the *count* of rows that match a condition? (condition).sum() Want to know the *percentage* of rows that match a condition? (condition).mean() See example 👇

    Poništi
  21. proslijedio/la je Tweet
    1. stu 2019.

    Playable sphere chess set. Mind expansion.

    Poništi

Čini se da učitavanje traje već neko vrijeme.

Twitter je možda preopterećen ili ima kratkotrajnih poteškoća u radu. Pokušajte ponovno ili potražite dodatne informacije u odjeljku Status Twittera.

    Možda bi vam se svidjelo i ovo:

    ·