Tweetovi
- Tweetovi, trenutna stranica.
- Tweetovi i odgovori
- Medijski sadržaj
Blokirali ste korisnika/cu @bkeyvani
Jeste li sigurni da želite vidjeti te tweetove? Time nećete deblokirati korisnika/cu @bkeyvani
-
Prikvačeni tweet
A computer scientists' geeky scary
#Halloween office decoration#cs#geekpic.twitter.com/ihsAdecNCp
Hvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Babak proslijedio/la je Tweet
New lecture series
We've teamed up with @ai_ucl to bring you the#UCLxDeepMind Deep Learning Lecture Series: 12 lectures covering a range of topics in Deep Learning - all led by DeepMind researchers, all free, and all open to everyone. Info & tickets:https://www.eventbrite.co.uk/o/ucl-x-deepmind-deep-learning-lecture-series-general-29078980901 …Prikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Babak proslijedio/la je Tweet
Drifting in an autonomous vehicle. Uses rotation rate of the vehicle’s velocity vector to track the path, while yaw acceleration is used to stabilize sideslip. Could help autonomous vehicles in emergencies. Fun results. https://ddl.stanford.edu/sites/g/files/sbiybj9456/f/marty_avec2018_fullpaper.pdf …pic.twitter.com/tSF3R1jTHu
Hvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Babak proslijedio/la je Tweet

pandas trick #94:
Want to save a *massive* amount of memory? Fix your data types:
'int8' for small integers
'category' for strings with few unique values
'Sparse' if most values are 0 or NaN
More info: https://pythonspeed.com/articles/pandas-load-less-data/ … by @itamarst#Python#pandastrickspic.twitter.com/jiBrkldFCt
Hvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Babak proslijedio/la je Tweet
This is amazing. I never thought my baby would have been used for such an important project! (Scanning of Rembrandt's Night Watch.)https://twitter.com/erdmann/status/1203823913802883072 …
Hvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Babak proslijedio/la je Tweet
This year I wrote a book teaching Deep Learning - it's goal is to be the easiest intro possible In the book, each lesson builds a neural component *from scratch* in
#NumPy Each *from scratch* toy code example is in the Github below.#100daysofMLcode https://github.com/iamtrask/Grokking-Deep-Learning …pic.twitter.com/upyCPWD7zt
Hvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Babak proslijedio/la je Tweet
I see a lot of "advanced Python" tutorials that talk about using map, filter, and reduce. Confession: I never use map, filter, or reduce. The first two are easily performed using list comprehensions or generator expressions. Common reductions are already there (sum, min, max).
Prikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Babak proslijedio/la je Tweet
Fantastic free ebook on Linear Algebra written by my colleague Stephen Boyd at Stanford. Highly recommended. PDF: https://web.stanford.edu/~boyd/vmls/vmls.pdf … Page: https://web.stanford.edu/~boyd/vmls/ Course: https://web.stanford.edu/class/ee103/ pic.twitter.com/Jug5VPO9yW
Hvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Babak proslijedio/la je Tweet
Sure, you could use _ as a throw-away variable in a Python for-loop. Yeah, you could definitely do that... like everyone else. Or you could just do this: >>> a = [ (0, 'Hello'), (1, 'Satan') ] >>> for {}[()], x in a: ... print(x) ... Hello Satan >>> Be different.
Prikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Babak proslijedio/la je Tweet
The great robot apocalypse may not be so bad after all...pic.twitter.com/qbTbGL7bhg
Hvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Babak proslijedio/la je Tweet
Another interesting use of
#python's walrus operator is to compute differences between successive values in a data stream. This is the inverse of accumulate(): >>> data = [10, 14, 34, 49, 70, 77] >>> prev = 0; [-prev + (prev := x) for x in data] [10, 4, 20, 15, 21, 7]Prikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Babak proslijedio/la je Tweet
"How to Scrape Yahoo Finance Data with Python" https://hackernoon.com/scraping-yahoo-finance-data-using-python-ayu3zyl …
#webscraping#datasciencetoolsHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Babak proslijedio/la je Tweet
#Python outranks Java as the second most popular language among 40 million developers on@Github, and contribution to open-source grows across the globe:https://octoverse.github.com/Hvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Babak proslijedio/la je Tweet

pandas trick #87:
Problem: You have time series data that you want to aggregate by day, but you're only interested in weekends.
Solution:
1. resample by day ('D')
2. filter by day of week (5=Saturday, 6=Sunday)
See example
#Python#DataScience#pandas#pandastrickspic.twitter.com/5yCPLpE6kr
Hvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Babak proslijedio/la je Tweet
VS Code now supports editing and running Jupyter notebooks https://towardsdatascience.com/jupyter-notebook-in-visual-studio-code-3fc21a36fe43 … Honestly, I still did not switch from classical NB but better autocompletion and variable explorer seem tempting.
#vscode#jupyterpic.twitter.com/jhB53gxA6j
Hvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Babak proslijedio/la je Tweet
Easy way to get stock market prices (and others economic data): >>> from pandas_datareader import data as wb >>> ticker_name = '^GSPC' >>> ticker = wb.DataReader(ticker_name, start='2010-1-1', data_source='yahoo') More info: https://pandas-datareader.readthedocs.io/en/latest/remote_data.html …pic.twitter.com/IZUKnSQyrC
Hvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Babak proslijedio/la je Tweet
With the walrus operator while True: line = fp.readline() if not line: break do_something(line) can be written as: while line := fp.readline(): do_something(line) More examples: https://www.python.org/dev/peps/pep-0572/#examples …
#python3_8#walrusoperatorHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Babak proslijedio/la je Tweet

pandas trick #81:
Does your object column contain mixed data types? Use df.col.apply(type).value_counts() to check!
See example
Thanks to @chris1610 for inspiring this trick! Read more: https://pbpython.com/currency-cleanup.html …#Python#DataScience#pandas#pandastrickspic.twitter.com/56gD5lqB4J
Hvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Babak proslijedio/la je Tweet

pandas trick #80:
Want to select multiple slices of columns from a DataFrame?
1. Use df.loc to select & pd.concat to combine
2. Slice df.columns & select using brackets
3. Use np.r_ to combine slices & df.iloc to select
See example
#Python#DataScience#pandastrickspic.twitter.com/IhbYbgpLKk
Hvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Babak proslijedio/la je Tweet

pandas tricks is back!
Want to know the *count* of rows that match a condition?
(condition).sum()
Want to know the *percentage* of rows that match a condition?
(condition).mean()
See example
#Python#DataScience#pandas#pandastrickspic.twitter.com/COqZy4EB2S
Hvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Babak proslijedio/la je Tweet
Playable sphere chess set. Mind expansion. https://tinyurl.com/y2smmmrq pic.twitter.com/rOM9hP2hWU
Hvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi
Čini se da učitavanje traje već neko vrijeme.
Twitter je možda preopterećen ili ima kratkotrajnih poteškoća u radu. Pokušajte ponovno ili potražite dodatne informacije u odjeljku Status Twittera.