Physical interpretation of the Manifold Hypothesishttps://mathoverflow.net/q/351368/56328?stw=2 …
-
-
Note: I think this might be one of the most interesting open problems in machine learning and neural information processing, unless a theoretical neuroscientist has already adequately addressed this question in a slightly different setting.
Prikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi
-
-
-
I don't understand the question yet. But one straightforward thought on neural manifold: Bottleneck-then-expansion strongly favors low-D representations in high-D space (though not guaranteed because of possible temporal multiplexing).
-
Here's the problem in two parts: In order to do ML we need to collect a lot of data from a data-generating process so this process must be stable. Empirically we observe that the intrinsic dimension d of the data is generally much smaller than the ambient dimension D. 1/2
- Još 4 druga odgovora
Novi razgovor -
Čini se da učitavanje traje već neko vrijeme.
Twitter je možda preopterećen ili ima kratkotrajnih poteškoća u radu. Pokušajte ponovno ili potražite dodatne informacije u odjeljku Status Twittera.