Tweetovi
- Tweetovi, trenutna stranica.
- Tweetovi i odgovori
- Medijski sadržaj
Blokirali ste korisnika/cu @bayesianbrain
Jeste li sigurni da želite vidjeti te tweetove? Time nećete deblokirati korisnika/cu @bayesianbrain
-
Prikvačeni tweet
Physical interpretation of the Manifold Hypothesishttps://mathoverflow.net/q/351368/56328?stw=2 …
Prikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Taking a few days off Twitter to work out the solution to an interesting problem. Another day, another challenge.
Hvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Aidan Rocke proslijedio/la je Tweet
I agree, it is interesting. The inverse model being something like: here are some state transitions, what are the interventions that were taken? Learning agents that could solve this in their environments would be better observational learners
Hvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
I would include motor control researchers in 'control theory'. :)
Prikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Prikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi
-
There also appears to be very little overlap between the causal inference community(dominated by statisticians) and the internal modelling community dominated by control theorists. Should control theorists create their own subfield of counterfactual control? Does it exist?
Prikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
I see many natural connections between internal models and counterfactual reasoning. However, while theories of internal modelling rely heavily on inverse models, I don’t see much in causal inference review papers on inverse models. Have I overlooked something?
Prikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
2. This is also relevant to scientists that want stable internal models for deep neural networks since a deep network is an exponentially large ensemble of linear models with compact support. For details on this last point, my article on the 26th of January offers more details.
Prikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
1. Here I present an elementary proof for a classical result in random matrix theory that applies to any random matrix sampled from a continuous distribution. One of its many important consequences is that almost all linear models with square Jacobian matrices are invertible.
Prikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Almost all random matrices are nonsingular https://keplerlounge.com/applied-math/2020/02/03/all-random-matrices.html … via
@bayesianbrainPrikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
One useful insight is that the dot product XY may be viewed as a random walk on the real line where nonzero step lengths have constant expected magnitude and zero step lengths are a measure zero event. Also, positive and negative steps occur with equal probability.
Prikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
By solving this simple case, you have the main insight required to solve the case of vectors sampled from an isotropic Gaussian. Assuming that your students know the central limit theorem you can use clever insights instead of doing cumbersome calculations.
Prikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
@KordingLab regarding your orthogonal random vectors question I find it useful to analyse an illustrative special case X ~ U([-1,+1])^n because you end up with an expression where you can easily apply the central limit theorem.Prikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Almost all random vectors are orthogonal https://keplerlounge.com/applied-math/2020/02/03/orthogonal-vectors.html … via
@bayesianbrainPrikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
'Fractional Calculus and Variational Mechanics' //http://large.stanford.edu/courses/2007/ph210/noriega2/ … An explanation of how the fractional calculus allows an extension of the Lagrangian to non-conservative systems.
Hvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Aidan Rocke proslijedio/la je Tweet
Bridging Motor and Cognitive Control: It’s About Time!
@harrison_ritz,@amitaishenhav, & Romy Frömer highlight recent@NatureNeuro work revealing similarities in the algorithms that control our thoughts and movements@mjaztwit,@EggerSethhttps://www.cell.com/trends/cognitive-sciences/fulltext/S1364-6613(19)30277-3#back-bib3 …Hvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
@ampanmdagaba,@NoahGuzman14 do you guys think this can work for problems in theoretical neuroscience? I mean interesting problems which won't be worked out in the next 10 years otherwise as they simultaneously require a combination of skills and solving a coordination problem.Prikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
'The Polymath Project is a collaboration among mathematicians to solve important and difficult mathematical problems by coordinating many mathematicians to communicate with each other on finding the best route to the solution.' link:https://polymathprojects.org/
Prikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Note: I think this might be one of the most interesting open problems in machine learning and neural information processing, unless a theoretical neuroscientist has already adequately addressed this question in a slightly different setting.
Prikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Finally, we are all on Twitter to exchange ideas and not one-up each other so I hope everyone feels free to share their perspective. :)
Prikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
I haven't seen this question properly formulated anywhere so this represents my attempt. From my discussions with an applied topologist it has yet to be properly addressed. I also highly doubt that this is one of those problems where there will be a single ‘eureka’ moment. ;)
Prikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi
Čini se da učitavanje traje već neko vrijeme.
Twitter je možda preopterećen ili ima kratkotrajnih poteškoća u radu. Pokušajte ponovno ili potražite dodatne informacije u odjeljku Status Twittera.