Tweetovi
- Tweetovi, trenutna stranica.
- Tweetovi i odgovori
- Medijski sadržaj
Blokirali ste korisnika/cu @alexdamour
Jeste li sigurni da želite vidjeti te tweetove? Time nećete deblokirati korisnika/cu @alexdamour
-
Prikvačeni tweet
NEW on arXiv from me, Peng Ding,
@AviFeller,@lihua_lei_stat, Jas Sekhon: Overlap in Observational Studies with High-Dimensional Covariates. Highlights a major often-overlooked concern when using Big Data
for causal inference.
https://arxiv.org/abs/1711.02582 Prikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Alexander D'Amour proslijedio/la je Tweet
Talk by
@alexdamour at#FAT2020 on "Fairness is not static: deeper understanding of long term fairness via simulation studies," with Hansa Srinivasan,@james_c_atwood, Pallavi Baljekar, D. Sculley, Yoni Halpernpic.twitter.com/2ckNoxtnqk
Prikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Alexander D'Amour proslijedio/la je Tweet
The 2020 Atlantic Causal Inference Conference (ACIC) will be in Austin, Texas, May 27-29. Submissions due Feb 7. This coincides with the conference being renamed "American" rather than "Atlantic" https://events.mccombs.utexas.edu/event/8737d5ac-9669-4198-91b6-faba5eb2876c/summary …
Hvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Alexander D'Amour proslijedio/la je Tweet
Generalization Bounds and Representation Learning for Estimation of Potential Outcomes and Causal Effects https://deepai.org/publication/generalization-bounds-and-representation-learning-for-estimation-of-potential-outcomes-and-causal-effects … by Fredrik D. Johansson et al. including
@nathankallus,@david_sontag#MachineLearning#EstimatorHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Alexander D'Amour proslijedio/la je Tweet
I have post-doc openings in my lab. Do you want to use empirical methods, design experiments, and collaborate with both large and small tech firms for research and social impact? Have interest in ed tech, fin tech, charitable giving, and social sector effectiveness? Apply! 1/3
Prikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Alexander D'Amour proslijedio/la je Tweet
(1/10) Happy to announce that my paper with
@chadhazlett is officially out on JRSS-B! (https://tinyurl.com/vo7o6wz ) In this paper, we develop new sensitivity analyses tools to precisely quantify how strong confounders need to be to overturn your research conclusions.Prikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Alexander D'Amour proslijedio/la je Tweet
Hey people managers! Here's a free, practical tip for making your organization more inclusive. It's one of the easiest and most cost effective ways to increase representation of senior level underestimated folk, and improve retention. It has to do with "Stretch Opportunities."
Prikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Alexander D'Amour proslijedio/la je Tweet
Thread with thoughts on
#MLKDay
:
It is worth setting the work we do at @black_in_ai in its historical context and think about future perspectives:Prikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Alexander D'Amour proslijedio/la je Tweet
A thread of classifiers learning a decision rule. Dashed line is optimal boundary. Animations with
#gganimate by@thomasp85 and@drob.#rstats Logistic regression {stats::glm} with each class having normally distributed features. (1/n)pic.twitter.com/kKmqdO2zGyPrikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Alexander D'Amour proslijedio/la je Tweet
Do you work with
#networks?#Causalinference? Care for a trip to Paris? Send your proposal for my panel on Causal Inference and Social Network Analysis at#sunbelt2020: https://www.insna.org/call-for-oral-presentations-and-posters …#socialnetworkanalysis#phdchatPrikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
They're teaching partial identification pretty early these days.https://twitter.com/NicDuquette/status/1217572920425234432 …
Hvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Alexander D'Amour proslijedio/la je Tweet
Check out a new study into how the uncertainty of
#ML models degrade with increasing dataset shift. Do the models become increasingly uncertain or do they become confidently incorrect? Learn all about it below!https://goo.gle/2QW6MZlPrikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Alexander D'Amour proslijedio/la je Tweet
We cannot fix what we cannot measure! Thank you
@NSF for funding my FAI proposal on *credible* fairness assessments and robustly fair algorithms: https://nsf.gov/awardsearch/showAward?AWD_ID=1939704 … Proud+excited to be working with the amazing people at http://nycja.org on this project.Hvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Alexander D'Amour proslijedio/la je Tweet
"But too seldom is the question asked: how can AI help correct these disparities?" Hot off the press! Check out our new
@NatureMedicine commentary "Treating Health Disparities with AI" w/ coauthors Shalmali Joshi +@MarzyehGhassemi https://www.nature.com/articles/s41591-019-0649-2 …pic.twitter.com/U7ABJHZJJR
Hvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Alexander D'Amour proslijedio/la je Tweet
Our variable importance paper is out in JMLR!! http://www.jmlr.org/papers/volume20/18-760/18-760.pdf … Often, many prediction models achieve high accuracy. A variable could be important to some models, but not others. We study how important a variable could be to *any* model (in a pre-specified class). (1/6)
Prikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Alexander D'Amour proslijedio/la je Tweet
We are organizing a workshop on Causal learning for Decision Making at
@iclr_conf along with@rosemary_ke@DeepSpiker@theophaneweber, Jovana Mitrovic,@janexwang, Stefan and@csilviavr. https://sites.google.com/view/causal-learning-icrl2020/home …@MILAMontreal Consider submitting your work!Hvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Alexander D'Amour proslijedio/la je Tweet
Running this thing tomorrow! Very apropos of recent
#MachineLearning Twitter conversations about causality, composability, and symbolic#AIhttps://twitter.com/osazuwa/status/1213950088646660096 …
Hvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Alexander D'Amour proslijedio/la je Tweet
Any examples of using Superlearner with DML or other semi-parametric methods besides TMLE, and likewise, people using TMLE with other ML nuisance parameter estimators? Curious how much of accuracy of the combo can be attributed to one vs other.
#epitwitter@mark_vdlaanHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Alexander D'Amour proslijedio/la je Tweet
<Obligatory new year recruiting pitch> I'm hiring a research scientist for my team at Lyft. We work at the intersection of causal inference and machine learning, developing tools for optimal decision making. Looking for folks with strong stats and causal inference backgrounds
Prikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Alexander D'Amour proslijedio/la je Tweet
My research group (located at Cornell Tech campus in NYC) is looking to recruit a postdoc to work on topics related to causal inference, fairness in ML, and sequential decision making (bandits+RL). Positions are renewable (1-2 years). Please retweet to spread the word.
Prikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Alexander D'Amour proslijedio/la je Tweet
In the works since...2015? 2016?...We built a new algorithm to infer continental genetic ancestry from off-target NGS reads @ 1e-4 coverage, and used it to show that carrier testing guidelines based on self-reported ethnicity are miscalibrated.https://twitter.com/joe_pickrell/status/1210575698143916038 …
Hvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi
Čini se da učitavanje traje već neko vrijeme.
Twitter je možda preopterećen ili ima kratkotrajnih poteškoća u radu. Pokušajte ponovno ili potražite dodatne informacije u odjeljku Status Twittera.