Tweetovi

Blokirali ste korisnika/cu @alex_w_jung

Jeste li sigurni da želite vidjeti te tweetove? Time nećete deblokirati korisnika/cu @alex_w_jung

  1. proslijedio/la je Tweet
    22. sij

    Excited to share our latest paper, which came out in early January "Clustered CTCF binding is an evolutionary mechanism to maintain topologically associating domains"!

    Prikaži ovu nit
    Poništi
  2. proslijedio/la je Tweet

    Like the classic competitions that accelerated the era of deep learning, the Human Protein Atlas competition had 2,171 team compete for analyzing ~78,000 images--> high performance models and collaborators

    Prikaži ovu nit
    Poništi
  3. proslijedio/la je Tweet
    22. stu 2019.

    Or it identifies a signature of somatic hypermutation producing clustered mutations with a distinct mutation spectrum at transcription start sites in lymphoid neoplasms. This appears to be the signature of AID and is different from the genome-wide clustered mutation spectrum 4/5

    Prikaži ovu nit
    Poništi
  4. proslijedio/la je Tweet
    22. stu 2019.

    Want to learn mutational signatures jointly based on mutation types + genomic activity patterns? My student has developed TensorSignatures to better characterise and localise mutational processes. 1/5

    Prikaži ovu nit
    Poništi
  5. proslijedio/la je Tweet
    6. stu 2019.

    My EMBL 2nd year PhD friends/fellows are doing a great job organizing this years' PhD Symposium, check it out! ;)

    Poništi
  6. proslijedio/la je Tweet
    5. stu 2019.

    For those at . Check out ’s poster 147 today. How to learn mutational signatures from mutation spectra *and* genomic activity patterns with TensorSignatures.

    Poništi
  7. proslijedio/la je Tweet
    25. lis 2019.

    It also finds a lot of associations in bulk transcriptome data, deconvolves the signal to find areas on each slide corresponding to molecular cell types such as tumour infiltrating lymphocytes. Entirely automated. 3/5

    Prikaži ovu nit
    Poništi
  8. proslijedio/la je Tweet
    25. lis 2019.

    Similarly the network finds prognostic associations in most cancer types that match and augment conventional grading and subtyping and points out prognostically relevant regions, such as necrosis, on each slide. 4/5

    Prikaži ovu nit
    Poništi
  9. proslijedio/la je Tweet
    25. lis 2019.

    This demonstrates how deep learning can integrate histopathology and genomics with huge potential for digitally augmenting diagnostic workflows - inc. challenges to tame a CNN. Great work by many lab members, Alex Jung and . Facilitated by and . 5/5 ///

    Prikaži ovu nit
    Poništi
  10. proslijedio/la je Tweet
    25. lis 2019.

    Hello world. Here’s something interesting: from my lab trained a deep convolutional neural net in cancer histopathology *and* genomics using 14M images from 17k H&E slides across 28 cancer types. The outcome is stunning. 1/5

    Prikaži ovu nit
    Poništi
  11. proslijedio/la je Tweet
    26. lis 2019.

    Without spatial annotation of tumor lymphocyte, our method PC-CHiP (Pan-Cancer Computational HistoPathology) is able to automatically identify regions with lymphocytes for thousands of large H&E whole tissue slides. Great tool to assist pathologists!

    Poništi

Čini se da učitavanje traje već neko vrijeme.

Twitter je možda preopterećen ili ima kratkotrajnih poteškoća u radu. Pokušajte ponovno ili potražite dodatne informacije u odjeljku Status Twittera.

    Možda bi vam se svidjelo i ovo:

    ·