Tweetovi
- Tweetovi, trenutna stranica.
- Tweetovi i odgovori
- Medijski sadržaj
Blokirali ste korisnika/cu @a_tschantz
Jeste li sigurni da želite vidjeti te tweetove? Time nećete deblokirati korisnika/cu @a_tschantz
-
Prikvačeni tweet
A new preprint from myself,
@manuelbaltieri,@anilkseth and@drclbuckley: "scaling active inference": https://arxiv.org/abs/1911.10601Hvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Alec Tschantz proslijedio/la je Tweet
To the left, you see a trained agent playing a level of a game. To the right, you see the same playthrough from an agent-centric perspective: cropped, translated, and rotated with the agent in the center. Which perspective is the best input for the agent? https://arxiv.org/abs/2001.09908 pic.twitter.com/7bCtBp8xUG
Prikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Alec Tschantz proslijedio/la je Tweet
TRADI: Tracking deep neural network weight distributions -- work with G. Franchi https://arxiv.org/abs/1912.11316 We’re proposing a cheap method for getting ensembles of networks from a single network training 1/pic.twitter.com/J31E9aaiKL
Prikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Alec Tschantz proslijedio/la je Tweet
Finally it's out: The simplicity of mixture models enhanced with dynamics brings to an elegant and powerful generative computational model. "The hippocampal formation as a hierarchical generative model supporting generative replay and continual learning"https://www.biorxiv.org/content/10.1101/2020.01.16.908889v1 …
Hvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Alec Tschantz proslijedio/la je Tweet
A technical critique of the free energy principle as presented in "Life as we know it". http://arxiv.org/abs/2001.06408
Hvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Alec Tschantz proslijedio/la je Tweet
We worked with
@harvardbrainsci to show that distributional RL, a recent development in AI research, can provide insight into previously unexplained elements of dopamine-based learning in the brain. Read the blog: https://deepmind.com/blog/article/Dopamine-and-temporal-difference-learning-A-fruitful-relationship-between-neuroscience-and-AI … (2/2)Prikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Alec Tschantz proslijedio/la je Tweet
ICYMI: new preprint by
@maxine_sherman@zfountas@anilkseth and me. In a preregistered model-based fMRI analysis we show that individual human duration estimates for naturalistic videos can be reproduced from visual cortex BOLD@TimingForumhttps://www.biorxiv.org/content/10.1101/2020.01.09.900423v1 …Prikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Alec Tschantz proslijedio/la je Tweet
The Case for Bayesian Deep Learning ”Bayesian or not, the prior will certainly be imperfect. Avoiding an important part of the modelling process because one has to make assumptions, however, will often be a worse alternative than an imperfect assumption.” https://cims.nyu.edu/~andrewgw/caseforbdl.pdf …pic.twitter.com/86rV2eqqXD
Hvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Alec Tschantz proslijedio/la je Tweet
Brains are amazing. Our lab demonstrates that single human layer 2/3 neurons can compute the XOR operation. Never seen before in any neuron in any other species. Out now in
@sciencemagazine. Congrats Albert, Tim@mattlark@YiotaPoirazi & COhttps://science.sciencemag.org/content/367/6473/83 …Hvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Alec Tschantz proslijedio/la je Tweet
"Markov blankets, information geometry and stochastic thermodynamics" - new work from Thomas Parr, Lancelot da Costa and Karl Friston demonstrating the link between thermodynamics, information and inference https://royalsocietypublishing.org/doi/full/10.1098/rsta.2019.0159?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub%3dpubmed …
Hvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Alec Tschantz proslijedio/la je Tweet
We're pleased to let you know that your submission, On Bonus Based Exploration Methods In The Arcade Learning Environment, has been accepted at
#ICLR2020! https://openreview.net/forum?id=BJewlyStDr … This huge endeavor was led by@aalitaiga. W/@LiamFedus,@marcgbellemare &@AaronCourville. More
Prikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Alec Tschantz proslijedio/la je Tweet
DeepInsight is a decoding framework for discovering and characterising the neural correlates of behaviour and stimuli in unprocessed biological data: http://biorxiv.org/content/10.1101/871848v1 …pic.twitter.com/K6goibHlha
Prikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Alec Tschantz proslijedio/la je Tweet
Model-based RL with models that factorize over entities; can discover object-like representations, and can be used to plan how to construct structures out of parts. w/ R. Veerapaneni, JD Co-Reyes, M. Chang, M. Janner,
@chelseabfinn, J. Wu, J. Tenenbaum https://sites.google.com/view/op3website/ …pic.twitter.com/9OJ3fgr1OSHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Alec Tschantz proslijedio/la je Tweet
You'd think a generative model should answer different queries but deep learning models like VAEs are trained to answer just one type of query! We introduce a method called query-training that creates an inference network that can answer novel query types. https://openreview.net/pdf?id=rJeoKJ3NKr …pic.twitter.com/SVR0kxpwQJ
Hvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Alec Tschantz proslijedio/la je Tweet
Are you skeptical about successor representations? Want to know how our new model can learn cognitive maps, context-specific representations, do transitive inference, and flexible hierarchical planning?
#tweeprint...(1)@vicariousai@swaroopgj@rvrikhye https://www.biorxiv.org/content/10.1101/864421v1 …https://twitter.com/vicariousai/status/1203063863123464192 …
Prikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Alec Tschantz proslijedio/la je Tweet
We introduce Dreamer, an RL agent that solves long-horizon tasks from images purely by latent imagination inside a world model. Dreamer improves over existing methods across 20 tasks. paper https://arxiv.org/pdf/1912.01603.pdf … code https://github.com/google-research/dreamer … Thread
pic.twitter.com/K5DnooVIUHPrikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Alec Tschantz proslijedio/la je Tweet
We're releasing Procgen Benchmark, 16 procedurally-generated environments for measuring how quickly a reinforcement learning agent learns generalizable skills. This has become the standard research platform used by the OpenAI RL team: https://openai.com/blog/procgen-benchmark/ …pic.twitter.com/OhECCCAeY3
Hvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Alec Tschantz proslijedio/la je Tweet
What's Hidden in a Randomly Weighted Neural Network? “Hidden in a randomly weighted Wide ResNet-50 we show that there is a subnetwork (with random weights) that is smaller than, but matches the performance of a ResNet-34 trained on ImageNet.”
https://arxiv.org/abs/1911.13299 https://twitter.com/Mitchnw/status/1201575787100561408 …
Prikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Alec Tschantz proslijedio/la je Tweet
I have been waiting for this paper by
@AndrewHaun3 and Tononi. Looking forward to reading it in detail. Why Does Space Feel the Way it Does? Towards a Principled Account of Spatial Experience https://www.mdpi.com/582980@MDPIOpenAccesshttps://www.mdpi.com/582980Hvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Alec Tschantz proslijedio/la je Tweet
The interaction between machine learning & neuroscience isn't just limited to sensory perception or cognition! New review on "Hierarchical motor control in mammals and machines" https://www.nature.com/articles/s41467-019-13239-6 …pic.twitter.com/betotl2cAV
Hvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Alec Tschantz proslijedio/la je Tweet
Structural knowledge allows participants to infer unobserved transitions and beneficial policy. Basis sets for structural knowledge allow these inferences by generalising over task particularities. by me
@moran_rani Thomas Parr Steve Kennerley@behrenstimbhttps://www.biorxiv.org/content/10.1101/860478v1 …Hvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi
Čini se da učitavanje traje već neko vrijeme.
Twitter je možda preopterećen ili ima kratkotrajnih poteškoća u radu. Pokušajte ponovno ili potražite dodatne informacije u odjeljku Status Twittera.