A group is a set with a distinguished element e and a binary operation [ , ] satisfying: ‣ [a,b] = [[a,c],[b,c]] ‣ [a,e] = a ‣ [a,a] = e for all a,b,c.
-
-
I suspect there's nothing interesting to do for the ring multiplication, because this definition really relies on having inverses. But one thing you'd want to do anyway is express the notion of "abelian group". The best I can do is ‣ [a,b]=[[e,b],[e,a]]
-
This encodes the commutative property, but is there a nicer way to do so?
- Još 1 odgovor
Novi razgovor -
Čini se da učitavanje traje već neko vrijeme.
Twitter je možda preopterećen ili ima kratkotrajnih poteškoća u radu. Pokušajte ponovno ili potražite dodatne informacije u odjeljku Status Twittera.