this would not work if, for example, we tried to use the rational numbers instead of the real numbers. circles with only rational coordinates would be "missing" a lot of points (with irrational coordinates) and that would produce the wrong answers to various questions
Conversation
so the real numbers "fill in gaps" that are "missing" in the rational numbers, and once you've filled those gaps the real numbers can implement euclidean geometry
1
1
39
so, okay, that's pretty good, why does anyone have a problem with the real numbers then (and they do)? the problem is that we pay a very bizarre price for filling in the gaps: almost every specific real number is literally indescribable, because there are too many of them!
1
1
46
the problem is that no matter how you choose to describe real numbers, there are only countably many possible descriptions (e.g. only countably many programs that spit out strings of digits), but uncountably many real numbers! it's wack
1
3
48
this makes some people very uncomfortable (and i think that discomfort is justified). what is "real" about the vast majority of the real number line being inaccessible to any form of description whatsoever???
1
5
42
(and i mean *vast* majority - in a precise technical sense the probability of a randomly chosen real number being describable is literally zero)
2
1
38
for the purposes of simpler questions in euclidean geometry you can get away with working with a much smaller set of numbers, the algebraic reals, which are all describable
but you actually need all of the real numbers to do calculus. and we need calculus for a million things
1
37
so the real numbers, as usually constructed, are (this is very much in-my-opinion) this philosophically unsatisfying technical kludge we put up with because it lets us put geometry and calculus and a million other things on a rigorous foundation
3
3
46
i have hopes that someday someone will find a more philosophically satisfying replacement for the real numbers but it's very unclear to me what that would look like
4
48
Why would you want to replace the real numbers? They're inelegant, but why anchor on the expectation that mathematics is inherently tidy?
1
Replying to
hopes are not the same as expectations! i simply want mathematics to be tidy where it can be and suspect this is a place it could be tidied up
Replying to
I suppose my surprise comes at the idea that the real numbers themselves might be thought of as unnecessarily messy; their messiness seemed to me to be the background white noise of the universe, and the elegant bits of math are what we construct on top of them.

