the reason is that thinking of circles, and geometric shapes generally, in terms of sets of points described by real number coordinates mechanically produces correct answers to classical geometric questions, about the intersections between circles, or whatever else
Conversation
thinking about points in the plane in terms of coordinates lets us reduce geometric questions to algebra. this is, broadly speaking, one of the most successful mathematical strategies ever, and mathematicians have taken it very far
1
2
63
this would not work if, for example, we tried to use the rational numbers instead of the real numbers. circles with only rational coordinates would be "missing" a lot of points (with irrational coordinates) and that would produce the wrong answers to various questions
1
1
40
so the real numbers "fill in gaps" that are "missing" in the rational numbers, and once you've filled those gaps the real numbers can implement euclidean geometry
1
1
39
so, okay, that's pretty good, why does anyone have a problem with the real numbers then (and they do)? the problem is that we pay a very bizarre price for filling in the gaps: almost every specific real number is literally indescribable, because there are too many of them!
1
1
46
the problem is that no matter how you choose to describe real numbers, there are only countably many possible descriptions (e.g. only countably many programs that spit out strings of digits), but uncountably many real numbers! it's wack
1
3
48
this makes some people very uncomfortable (and i think that discomfort is justified). what is "real" about the vast majority of the real number line being inaccessible to any form of description whatsoever???
1
5
42
(and i mean *vast* majority - in a precise technical sense the probability of a randomly chosen real number being describable is literally zero)
2
1
38
for the purposes of simpler questions in euclidean geometry you can get away with working with a much smaller set of numbers, the algebraic reals, which are all describable
but you actually need all of the real numbers to do calculus. and we need calculus for a million things
1
37
This Tweet was deleted by the Tweet author. Learn more
huh. sounds annoying to set up but might work, haven't tried it. i assume you need to add computability assumptions on functions and make the epsilon-delta definition of continuity more constructive and so forth?
Replying to
I’d be surprised if this was workable, given you don’t have the least upper bound property, let alone metric completeness, if you’re working with just computable reals. It’d at least be significantly more tedious.


