Skip to content
By using Twitter’s services you agree to our Cookies Use. We and our partners operate globally and use cookies, including for analytics, personalisation, and ads.

For the best Twitter experience, please use Microsoft Edge, or install the Twitter app from Microsoft Store.

  • Home Home Home, current page.
  • About

Saved searches

  • Remove
  • In this conversation
    Verified accountProtected Tweets @
Suggested users
  • Verified accountProtected Tweets @
  • Verified accountProtected Tweets @
  • Language: English
    • Bahasa Indonesia
    • Bahasa Melayu
    • Català
    • Čeština
    • Dansk
    • Deutsch
    • English UK
    • Español
    • Filipino
    • Français
    • Hrvatski
    • Italiano
    • Magyar
    • Nederlands
    • Norsk
    • Polski
    • Português
    • Română
    • Slovenčina
    • Suomi
    • Svenska
    • Tiếng Việt
    • Türkçe
    • Ελληνικά
    • Български език
    • Русский
    • Српски
    • Українська мова
    • עִבְרִית
    • العربية
    • فارسی
    • मराठी
    • हिन्दी
    • বাংলা
    • ગુજરાતી
    • தமிழ்
    • ಕನ್ನಡ
    • ภาษาไทย
    • 한국어
    • 日本語
    • 简体中文
    • 繁體中文
  • Have an account? Log in
    Have an account?
    · Forgot password?

    New to Twitter?
    Sign up
MathPrinceps's profile
Laurens Gunnarsen
Laurens Gunnarsen
Laurens Gunnarsen
@MathPrinceps

Tweets

Laurens Gunnarsen

@MathPrinceps

Mathematical physicist and mentor to mathematically talented youth. Talent is that which bridges the gap between what can be taught and what must be learned.

Joined June 2012

Tweets

  • © 2020 Twitter
  • About
  • Help Center
  • Terms
  • Privacy policy
  • Imprint
  • Cookies
  • Ads info
Dismiss
Previous
Next

Go to a person's profile

Saved searches

  • Remove
  • In this conversation
    Verified accountProtected Tweets @
Suggested users
  • Verified accountProtected Tweets @
  • Verified accountProtected Tweets @

Promote this Tweet

Block

  • Tweet with a location

    You can add location information to your Tweets, such as your city or precise location, from the web and via third-party applications. You always have the option to delete your Tweet location history. Learn more

    Your lists

    Create a new list


    Under 100 characters, optional

    Privacy

    Copy link to Tweet

    Embed this Tweet

    Embed this Video

    Add this Tweet to your website by copying the code below. Learn more

    Add this video to your website by copying the code below. Learn more

    Hmm, there was a problem reaching the server.

    By embedding Twitter content in your website or app, you are agreeing to the Twitter Developer Agreement and Developer Policy.

    Preview

    Why you're seeing this ad

    Log in to Twitter

    · Forgot password?
    Don't have an account? Sign up »

    Sign up for Twitter

    Not on Twitter? Sign up, tune into the things you care about, and get updates as they happen.

    Sign up
    Have an account? Log in »

    Two-way (sending and receiving) short codes:

    Country Code For customers of
    United States 40404 (any)
    Canada 21212 (any)
    United Kingdom 86444 Vodafone, Orange, 3, O2
    Brazil 40404 Nextel, TIM
    Haiti 40404 Digicel, Voila
    Ireland 51210 Vodafone, O2
    India 53000 Bharti Airtel, Videocon, Reliance
    Indonesia 89887 AXIS, 3, Telkomsel, Indosat, XL Axiata
    Italy 4880804 Wind
    3424486444 Vodafone
    » See SMS short codes for other countries

    Confirmation

     

    Welcome home!

    This timeline is where you’ll spend most of your time, getting instant updates about what matters to you.

    Tweets not working for you?

    Hover over the profile pic and click the Following button to unfollow any account.

    Say a lot with a little

    When you see a Tweet you love, tap the heart — it lets the person who wrote it know you shared the love.

    Spread the word

    The fastest way to share someone else’s Tweet with your followers is with a Retweet. Tap the icon to send it instantly.

    Join the conversation

    Add your thoughts about any Tweet with a Reply. Find a topic you’re passionate about, and jump right in.

    Learn the latest

    Get instant insight into what people are talking about now.

    Get more of what you love

    Follow more accounts to get instant updates about topics you care about.

    Find what's happening

    See the latest conversations about any topic instantly.

    Never miss a Moment

    Catch up instantly on the best stories happening as they unfold.

    1. Laurens Gunnarsen‏ @MathPrinceps 26 Nov 2019
      • Report Tweet

      In particular, looking just at mathematics, we find the following names associated with profound innovations made in the first two decades of the last century: Frobenius, Burnside, Poincaré, Hilbert, Minkowski, Hadamard, Cartan, Takagi, Ramanujan, Weyl, Hecke, Noether, Banach.

      1 reply 2 retweets 33 likes
      Show this thread
    2. Laurens Gunnarsen‏ @MathPrinceps 26 Nov 2019
      • Report Tweet

      It is impossible to argue that the first two decades of mathematical research in this century have produced any innovations as profound as group representation theory, functional analysis, dynamical systems theory, the geometry of fiber bundles, or class field theory.

      2 replies 2 retweets 31 likes
      Show this thread
    3. Laurens Gunnarsen‏ @MathPrinceps 26 Nov 2019
      • Report Tweet

      Great researchers in mathematics are certainly not ten times more numerous today than they were a century ago; indeed, it takes some audacity to argue that we have as many. (It's far from clear, for example, whether anyone alive today can bear close comparison with Poincaré.)

      1 reply 0 retweets 21 likes
      Show this thread
    4. Laurens Gunnarsen‏ @MathPrinceps 26 Nov 2019
      • Report Tweet

      But if conditions today are so spectacularly more favorable to successful research in the mathematical sciences than a century ago, and the number of trained researchers has grown by at least an order of magnitude, why is there no corresponding growth in achievement?

      1 reply 2 retweets 30 likes
      Show this thread
    5. Laurens Gunnarsen‏ @MathPrinceps 26 Nov 2019
      • Report Tweet

      Mathematics itself may be the most illuminating case to study, because a "depletion of low-hanging fruit" explanation of modern stagnation is least tenable there. All the fundamental laws of physics may already have been discovered, but nothing like this is true in mathematics.

      2 replies 1 retweet 39 likes
      Show this thread
    6. Laurens Gunnarsen‏ @MathPrinceps 26 Nov 2019
      • Report Tweet

      Indeed, mathematics is demonstrably inexhaustible, and the exceedingly long history of the art records no fallow period during which its master practitioners believed they might be unable for fundamental reasons to discover deep new results of lasting interest.

      1 reply 0 retweets 25 likes
      Show this thread
    7. Laurens Gunnarsen‏ @MathPrinceps 26 Nov 2019
      • Report Tweet

      Note that this contrasts strikingly with physics: in 1894, Michelson judged it likely that "most of the grand underlying principles have been firmly established," and that "the future truths of physical science are to be looked for in the sixth place of decimals."

      1 reply 1 retweet 23 likes
      Show this thread
    8. Laurens Gunnarsen‏ @MathPrinceps 26 Nov 2019
      • Report Tweet

      No similarly eminent mathematician has mooted a similarly pessimistic view of the art's prospects. On the contrary: great mathematicians have tended to predict extraordinary things to result from the art's inevitable assimilation and refinement of recent breakthroughs.

      1 reply 0 retweets 17 likes
      Show this thread
    9. Laurens Gunnarsen‏ @MathPrinceps 26 Nov 2019
      • Report Tweet

      Because mathematicians have the freedom to devise and pursue entirely new fields of research -- a freedom successfully exploited, repeatedly, by its greatest past masters -- the formidable intricacy of its current best-established fields is no bar to its further flourishing.

      1 reply 1 retweet 20 likes
      Show this thread
    10. Laurens Gunnarsen‏ @MathPrinceps 26 Nov 2019
      • Report Tweet

      If at any particular epoch of mathematical history no low-hanging fruit remains on some particular mathematical tree, then mathematicians may choose to plant, cultivate, and harvest the fruit of entirely new trees. Indeed, when frustrated, they have often done exactly that.

      2 replies 2 retweets 23 likes
      Show this thread
      Laurens Gunnarsen‏ @MathPrinceps 26 Nov 2019
      • Report Tweet

      So what is going on? Why is mathematical practice today not dramatically more successful than a century ago? Why is there no spectacular contemporary flourishing of the art, with entirely new fields opened up by ten times as many Poincarés, Hilberts, Cartans, and Noethers?

      10:57 AM - 26 Nov 2019
      • 4 Retweets
      • 61 Likes
      • Arthur Wesley Architext Hayy ibn Yaqdhan Albert Szabo Base Space Jason Underdown (下岡) Rachana Monica Sing kirdog
      26 replies 4 retweets 61 likes
        1. New conversation
        2. Daniel O'Connor‏ @Singularitarian 27 Nov 2019
          • Report Tweet
          Replying to @MathPrinceps

          Although there is an infinite amount of math to discover, as we progress new math becomes more difficult to discover, because one must first master all of the relevant math that is already known. In that sense, the low hanging fruit has been picked.

          1 reply 0 retweets 7 likes
        3. Laurens Gunnarsen‏ @MathPrinceps 27 Nov 2019
          • Report Tweet
          Replying to @Singularitarian

          If it were necessary to master all the relevant math that is already known, no progress would ever result. Already in 1900, Hilbert maintained that this was an impossible undertaking.

          1 reply 0 retweets 2 likes
        4. 1 more reply
        1. New conversation
        2. Elad kosloff‏ @eladkosloff 27 Nov 2019
          • Report Tweet
          Replying to @MathPrinceps

          There are entirely new fields created in the last 60 years . To name a few: Computer science, geometric group theory, arithmetic geometry, category theory. Those are huge fields that may have earlier origins but are essentially new.

          1 reply 0 retweets 7 likes
        3. Laurens Gunnarsen‏ @MathPrinceps 27 Nov 2019
          • Report Tweet
          Replying to @eladkosloff

          How many of these were created in the past twenty years?

          2 replies 0 retweets 0 likes
        4. 3 more replies
        1. New conversation
        2. John Carlos Baez‏ @johncarlosbaez 27 Nov 2019
          • Report Tweet
          Replying to @MathPrinceps

          My view of current-day mathematics is much more optimistic. So much amazing stuff is going on that the field isn't dominated by a few giants. When you get ten times as many Poincarés, Hilberts, Cartans, and Noethers they don't seem like such a big deal anymore. (1/2)

          1 reply 2 retweets 57 likes
        3. John Carlos Baez‏ @johncarlosbaez 27 Nov 2019
          • Report Tweet
          Replying to @johncarlosbaez @MathPrinceps

          So many good new ideas are showing up that it's become much harder to keep up with them all. Voevodsky's homotopy type theory. Lurie's work on (infinity,1)-categories. Witten's work on string theory, M-theory and geometric Langlands (math, not physics). And much more. (2/2)

          1 reply 1 retweet 34 likes
        4. 1 more reply
        1. New conversation
        2. Paul Johnson‏ @ptwiddle 26 Nov 2019
          • Report Tweet
          Replying to @MathPrinceps

          I think you're overplaying the "no low-hanging fruit" - though we do plant new trees, we keep climbing the old ones as well, and it gets much harder, but huge breakthroughs do happen - classification of finite simple groups! The geometrization conjecture!

          1 reply 0 retweets 8 likes
        3. Paul Johnson‏ @ptwiddle 26 Nov 2019
          • Report Tweet
          Replying to @ptwiddle @MathPrinceps

          Fields have been spectacularly rebuilt, sometimes multiple times - algebraic geometry, algebraic topology, logic. And whole new fields - graph theory, numerical methods using computers, category theory...

          1 reply 0 retweets 6 likes
        4. 1 more reply
        1. Model Of Theory‏ @ModelOfTheory 26 Nov 2019
          • Report Tweet
          Replying to @MathPrinceps

          Part of this must be that today's "superior" institutional support structures support production of acceptable work, which has indeed increased tremendously in volume, and neglect to support production of revolutionary work, support for which is much different in character.

          0 replies 0 retweets 18 likes
          Thanks. Twitter will use this to make your timeline better. Undo
          Undo
        1. New conversation
        2. Timothy Gowers‏ @wtgowers 27 Nov 2019
          • Report Tweet
          Replying to @MathPrinceps

          I think maths just grows so fast that important innovations will on average have an effect on a smaller proportion of the subject. So a fairer comparison might be between giants of mathematics 100 years ago and giants of some (largish) subdomain of mathematics now.

          1 reply 0 retweets 7 likes
        3. Timothy Gowers‏ @wtgowers 27 Nov 2019
          • Report Tweet
          Replying to @wtgowers @MathPrinceps

          One could argue (I'd be interested to know whether people think it would be correct though) that mathematicians like Gauss, Euler and Riemann had an even bigger impact than the ones you list from the early 20th-century.

          0 replies 0 retweets 4 likes
        4. End of conversation

      Loading seems to be taking a while.

      Twitter may be over capacity or experiencing a momentary hiccup. Try again or visit Twitter Status for more information.

        Promoted Tweet

        false

        • © 2020 Twitter
        • About
        • Help Center
        • Terms
        • Privacy policy
        • Imprint
        • Cookies
        • Ads info