Access to advanced education in the mathematical sciences has become much easier and more general over the last century. Today's graduates hoping to pursue a career in research have vastly more practical options than did their counterparts of a century ago.
-
-
Note that this contrasts strikingly with physics: in 1894, Michelson judged it likely that "most of the grand underlying principles have been firmly established," and that "the future truths of physical science are to be looked for in the sixth place of decimals."
Show this thread -
No similarly eminent mathematician has mooted a similarly pessimistic view of the art's prospects. On the contrary: great mathematicians have tended to predict extraordinary things to result from the art's inevitable assimilation and refinement of recent breakthroughs.
Show this thread -
Because mathematicians have the freedom to devise and pursue entirely new fields of research -- a freedom successfully exploited, repeatedly, by its greatest past masters -- the formidable intricacy of its current best-established fields is no bar to its further flourishing.
Show this thread -
If at any particular epoch of mathematical history no low-hanging fruit remains on some particular mathematical tree, then mathematicians may choose to plant, cultivate, and harvest the fruit of entirely new trees. Indeed, when frustrated, they have often done exactly that.
Show this thread -
So what is going on? Why is mathematical practice today not dramatically more successful than a century ago? Why is there no spectacular contemporary flourishing of the art, with entirely new fields opened up by ten times as many Poincarés, Hilberts, Cartans, and Noethers?
Show this thread
End of conversation
New conversation -
Loading seems to be taking a while.
Twitter may be over capacity or experiencing a momentary hiccup. Try again or visit Twitter Status for more information.