Tweetovi
- Tweetovi, trenutna stranica.
- Tweetovi i odgovori
- Medijski sadržaj
Blokirali ste korisnika/cu @GuptaRajat033
Jeste li sigurni da želite vidjeti te tweetove? Time nećete deblokirati korisnika/cu @GuptaRajat033
-
Rajat Gupta proslijedio/la je Tweet
New paper: Towards a Human-like Open-Domain Chatbot. Key takeaways: 1. "Perplexity is all a chatbot needs" ;) 2. We're getting closer to a high-quality chatbot that can chat about anything Paper: https://arxiv.org/abs/2001.09977 Blog: https://ai.googleblog.com/2020/01/towards-conversational-agent-that-can.html …pic.twitter.com/5SOBa58qx3
Prikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Rajat Gupta proslijedio/la je Tweet
BigGAN samples are famously photo-realistic but limited in diversity for some classes. Slightly modifying only the class embeddings (network unchanged) can reduce the diversity gap by ~50%! Work with Long Mai and led by fantastic
@MkQili!! Paper & video: http://anhnguyen.me/project/biggan-am/ …pic.twitter.com/MhIOxCepV5
Prikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Rajat Gupta proslijedio/la je Tweet
Very happy to share our latest work accepted at
#ICRL2020: we prove that a Self-Attention layer can express any CNN layer. 1/5
Paper: https://openreview.net/pdf?id=HJlnC1rKPB …
Interactive website : https://epfml.github.io/attention-cnn/
Code: https://github.com/epfml/attention-cnn …
Blog: http://jbcordonnier.com/posts/attention-cnn/ …pic.twitter.com/X1rNS1JvPtPrikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Rajat Gupta proslijedio/la je Tweet
Drifting in an autonomous vehicle. Uses rotation rate of the vehicle’s velocity vector to track the path, while yaw acceleration is used to stabilize sideslip. Could help autonomous vehicles in emergencies. Fun results. https://ddl.stanford.edu/sites/g/files/sbiybj9456/f/marty_avec2018_fullpaper.pdf …pic.twitter.com/tSF3R1jTHu
Hvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Rajat Gupta proslijedio/la je Tweet
The 2010s were an eventful decade for NLP! Here are ten shocking developments since 2010, and 13 papers* illustrating them, that have changed the field almost beyond recognition. (* in the spirit of
@iamtrask and@FelixHill84, exclusively from other groups :)).Prikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Rajat Gupta proslijedio/la je Tweet
Solo papers are going back into style! They are great because they are like ambitious manifestos that describe a unique idea and boldly broadcast that this is my idea and my idea alone! Here are the latest ones from prominent AI researchers.
Prikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Rajat Gupta proslijedio/la je Tweet
Still slowly making my way through this year's NeurIPS talks. Esp like to stumble by good talks from slightly different areas, e.g. tonight liked "ML Meets Single-Cell Biology" https://slideslive.com/38921722/machine-learning-meets-singlecell-biology-insights-and-challenges … Incredible that we're mapping out cell state markov chains for tissues.pic.twitter.com/eJcCC2AGDB
Hvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Rajat Gupta proslijedio/la je Tweet
The press about surveillance capitalism focuses on unintended effects like hacks and data theft. That’s important, but we must resist the *intended* effect—the cultivation of a consumerist society whose behavior can be manipulated at a massive scale to suit commercial interests.
Prikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Rajat Gupta proslijedio/la je TweetHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi
-
Rajat Gupta proslijedio/la je Tweet
BackPACK: Packing more into backprop "we introduce BackPACK, an efficient framework built on top of PyTorch, that extends the backpropagation algorithm to extract additional information from first- and second-order derivatives" https://arxiv.org/abs/1912.10985 https://f-dangel.github.io/backpack/ pic.twitter.com/sX9Rp6We1w
Hvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Rajat Gupta proslijedio/la je Tweet
Can we simulate both a user
and system
and learn to autocomplete in an unsupervised way?
Yes! We frame the autocomplete task as a cooperative communication game. #StanfordNLP Talk: Dec 14 9:45-10AM (West 118)#NeurIPS2019 https://arxiv.org/abs/1911.06964 pic.twitter.com/w73UKQabhe
Prikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Rajat Gupta proslijedio/la je Tweet
Our new paper, Deep Learning for Symbolic Mathematics, is now on arXiv https://arxiv.org/abs/1912.01412 We added *a lot* of new results compared to the original submission. With
@f_charton (1/7)pic.twitter.com/GrhQRT5WRW
Prikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Rajat Gupta proslijedio/la je Tweet
Excited to share our work on Contrastive Learning of Structured World Models! C-SWMs learn object-factorized models & discover objects without supervision, using a simple loss inspired by work on graph embeddings Paper: http://arxiv.org/abs/1911.12247 Code: https://github.com/tkipf/c-swm 1/5pic.twitter.com/2n38bhOaKc
Prikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Rajat Gupta proslijedio/la je Tweet
My most recent
@GoogleAI residency project is out: "Hamiltonian Neural Networks" Blog: https://greydanus.github.io/2019/05/15/hamiltonian-nns/ … Paper: https://arxiv.org/abs/1906.01563 Starting from noisy (pixel) data, we can learn _exact_ conservation of energy-like quantities.pic.twitter.com/SY2jZBr5anPrikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Rajat Gupta proslijedio/la je Tweet
I've been working with
@GuggerSylvain for a long time to create something that combines the best of@ProjectJupyter Notebooks with the best of traditional software development approaches. It's called nbdev. We're releasing it today as open source. https://www.fast.ai/2019/12/02/nbdev/ … 1/pic.twitter.com/u9x26L4uRf
Prikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Rajat Gupta proslijedio/la je Tweet
Large language models are starting to capture larger swaths of English Grammar, and several of us at NYU have gotten interested in trying to get a broad overview of where models are succeeding and failing. [new dataset alert; thread]pic.twitter.com/9DcqCEAtUR
Prikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Rajat Gupta proslijedio/la je Tweet
In our recent collaboration with
@berkeley_ai we show how to generate realistic complex scenes from scratch! While the problem is extremely challenging, we show how to achieve SOTA in unconditional generation and improve conditional generation using SPADE http://arxiv.org/pdf/1911.11357.pdf …pic.twitter.com/fVXkEvMdkt
Hvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Rajat Gupta proslijedio/la je Tweet
Introducing the SHA-RNN :) - Read alternative history as a research genre - Learn of the terrifying tokenization attack that leaves language models perplexed - Get near SotA results on enwik8 in hours on a lone GPU No Sesame Street or Transformers allowed. https://arxiv.org/abs/1911.11423 pic.twitter.com/RN5TPZ3xWH
Hvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Rajat Gupta proslijedio/la je Tweet
Something i've been working on for the last couple of months: https://autocat.apps.allenai.org/ Train practical
@spacy_io models on your data, download a pip installable model, with the idea of reducing the amount of time between idea and implementation.#NLProcPrikaži ovu nitHvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi -
Rajat Gupta proslijedio/la je Tweet
I wrote an 8k word doc on machine learning systems design. This covers: 1. Project setup 2. Data pipeline 3. Training & debugging 4. Serving with case studies, resources, and 27 exercises. This is the 1st draft so feedback is much needed. Thank you!https://github.com/chiphuyen/machine-learning-systems-design/blob/master/build/build1/consolidated.pdf …
Hvala. Twitter će to iskoristiti za poboljšanje vaše vremenske crte. PoništiPoništi
Čini se da učitavanje traje već neko vrijeme.
Twitter je možda preopterećen ili ima kratkotrajnih poteškoća u radu. Pokušajte ponovno ili potražite dodatne informacije u odjeljku Status Twittera.