COCO 탐지 접근과 정확도 ImageNet 픽셀폰같은 플랫폼에서 직접 측정하는 MobileNetV2 NASNet보다 빠른 MobileNet 으로 더 적은계산비용으로 SSD300과 비교되는 이미지분류 얼굴인식 물체탐지 컨볼루션신경망 모바일장치 - 본문내용 읽어보면서 ‘-‘pic.twitter.com/4Xehq23Mbx
U tweetove putem weba ili aplikacija drugih proizvođača možete dodati podatke o lokaciji, kao što su grad ili točna lokacija. Povijest lokacija tweetova uvijek možete izbrisati. Saznajte više
COCO 탐지 접근과 정확도 ImageNet 픽셀폰같은 플랫폼에서 직접 측정하는 MobileNetV2 NASNet보다 빠른 MobileNet 으로 더 적은계산비용으로 SSD300과 비교되는 이미지분류 얼굴인식 물체탐지 컨볼루션신경망 모바일장치 - 본문내용 읽어보면서 ‘-‘pic.twitter.com/4Xehq23Mbx
Nice work!!
By my math, MnasNet+SE 76.1% accuracy w/ 19x fewer parameters+10x fewer multiplyadds operations in a @Google Pixel 2XL weighing in at 175g has a PowerToWeight distribution factor 8.23 when allowing for FREE unlimited OQ photo storage until 12/31/2020 as a parameter.
As the demand for data storage increases so does the operational expense of power consumption. By the end of 2020, data storage facilities could see an increase of 5-7% in power consumption (up ~30% since 2002) #MachineLearning helps to keep cost down by demonstrating 15kW/GB use
Good Job @GoogleAI! It’s incredible, how you combine different learning models to create more wholistic learning approach.
Twitter je možda preopterećen ili ima kratkotrajnih poteškoća u radu. Pokušajte ponovno ili potražite dodatne informacije u odjeljku Status Twittera.