A group is a set with a distinguished element e and a binary operation [ , ] satisfying: ‣ [a,b] = [[a,c],[b,c]] ‣ [a,e] = a ‣ [a,a] = e for all a,b,c.
It looks like you can reduce the axioms further to the structure of the division map [ , ] subject to the axioms that [a,b] = [[a,c],[b,c]] and that all [a,a] are equal to a single element.
-
-
I don't know how you'd get out of insisting [a,[a,a]]=a. But otherwise it's fine to do this… that's how it is presented in Hall's book actually.https://twitter.com/solifine/status/1212064308311609345 …
-
Oh! You're right. I forgot to add the requirement that the division map is surjective. Once you add this, then it follows that [a,[a,a]]= a.
- Još 1 odgovor
Novi razgovor -
Čini se da učitavanje traje već neko vrijeme.
Twitter je možda preopterećen ili ima kratkotrajnih poteškoća u radu. Pokušajte ponovno ili potražite dodatne informacije u odjeljku Status Twittera.