The idea is to fill in most of the uploaded genome with fake genotypes designed to match no one, so any people returned as matches will match the uploaded dataset at the site of interest. (10/n)pic.twitter.com/rxNB1Znaf6
Za najbolje sučelje na Twitteru koristite Microsoft Edge ili instalirajte aplikaciju Twitter iz trgovine Microsoft Store.
Postdoc at UC Davis. Incoming assistant prof. in quantitative and computational biology @USC (starting 2020). Population genetics, statistics, music.
U tweetove putem weba ili aplikacija drugih proizvođača možete dodati podatke o lokaciji, kao što su grad ili točna lokacija. Povijest lokacija tweetova uvijek možete izbrisati. Saznajte više
Dodajte ovaj Tweet na svoje web-mjesto kopiranjem koda u nastavku. Saznajte više
Dodajte ovaj videozapis na svoje web-mjesto kopiranjem koda u nastavku. Saznajte više
Integracijom Twitterova sadržaja u svoje web-mjesto ili aplikaciju prihvaćate Twitterov Ugovor za programere i Pravila za programere.
| Država | Kod | Samo za korisnike |
|---|---|---|
| Sjedinjene Američke Države | 40404 | (bilo koje) |
| Kanada | 21212 | (bilo koje) |
| Ujedinjeno Kraljevstvo | 86444 | Vodafone, Orange, 3, O2 |
| Brazil | 40404 | Nextel, TIM |
| Haiti | 40404 | Digicel, Voila |
| Irska | 51210 | Vodafone, O2 |
| Indija | 53000 | Bharti Airtel, Videocon, Reliance |
| Indonezija | 89887 | AXIS, 3, Telkomsel, Indosat, XL Axiata |
| Italija | 4880804 | Wind |
| 3424486444 | Vodafone | |
| » Pogledajte SMS kratke šifre za druge zemlje | ||
Vremenska crta mjesto je na kojem ćete provesti najviše vremena i bez odgode dobivati novosti o svemu što vam je važno.
Prijeđite pokazivačem preko slike profila pa kliknite gumb Pratim da biste prestali pratiti neki račun.
Kada vidite Tweet koji volite, dodirnite srce – to osobi koja ga je napisala daje do znanja da vam se sviđa.
Najbolji je način da podijelite nečiji Tweet s osobama koje vas prate prosljeđivanje. Dodirnite ikonu da biste smjesta poslali.
Pomoću odgovora dodajte sve što mislite o nekom tweetu. Pronađite temu koja vam je važna i uključite se.
Bez odgode pogledajte o čemu ljudi razgovaraju.
Pratite više računa da biste dobivali novosti o temama do kojih vam je stalo.
Bez odgode pogledajte najnovije razgovore o bilo kojoj temi.
Bez odgode pratite kako se razvijaju događaji koje pratite.
The idea is to fill in most of the uploaded genome with fake genotypes designed to match no one, so any people returned as matches will match the uploaded dataset at the site of interest. (10/n)pic.twitter.com/rxNB1Znaf6
The third approach is called “baiting,” and it takes advantage of methods for identifying relatives that rely on unphased genetic data. (That is, genetic data where we don’t know which alleles go together on the same copy of a chromosome.) (11/n)
You can identify relatives in unphased data by looking for long regions where two people are never homozygous for opposite alleles. (12/n)https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0034267 …
Though no longer cutting-edge, this method scales to big datasets. One big problem is that it’s easy to trick---upload a fake dataset that’s heterozygous at every site, and it will appear to match everyone everywhere, as if it were the parent of everyone in the database. (13/n)
You can use this to reveal genotypes at specified locations. Upload a dataset that’s mostly het, but put in homozygous genotypes at the sites you want to know. If a person in the database has the opposite homozygous genotype, the inferred related segment will break. (14/n)pic.twitter.com/n8QWh95TGP
Under the simplest version of this kind of relative-finding algorithm, we estimate that you could reveal enough genotypes to impute genome-wide genotypes of everybody in the database with 97%+ accuracy after about a hundred uploads. (15/n)
And if you just care about one SNP---such as one that reveals APOE4 alleles and thus a lot of information about Alzheimer's risk, for example---you could get the genotypes of everyone in the database w/ 2 uploads of fake data. (16/n)
Luckily, all the attacks we describe are preventable, or at least can be made inefficient, if DTC services use a subset of the countermeasures we describe (17/n)pic.twitter.com/fWho3Ux7Oj
Some countermeasures are easy, like only returning information about long chromosomal matches. Others, like requiring cryptographic signatures suggested by @erlichya @itsikp @ShaiCarmi last year, are harder to implement but very effective (18/n)https://science.sciencemag.org/content/362/6415/690/tab-figures-data …
We wrote to all the DTC genealogy services we know of that allow uploads 90 days ago to share these methods and the countermeasures we recommend. They all wrote back to us, and some of them told us that some of these countermeasures are already in place. (19/n)
We’d encourage all services that might potentially be affected by these kinds of attacks to share the countermeasures they have in place publicly. (20/n)
Genetic genealogy can be an amazing, empowering thing for people who want to find their biological relatives, including folks who wouldn’t be able to find them otherwise. Our goal (shared w/ the companies offering these services) is that people be able to do this safely. (21/n)
And of course, this is all part of a larger conversation about how we as a society want our genetic information used and want our genetic privacy protected. (Add it to a list of reasons to @extendGINA) (end)
Twitter je možda preopterećen ili ima kratkotrajnih poteškoća u radu. Pokušajte ponovno ili potražite dodatne informacije u odjeljku Status Twittera.