2/7 EchoNet-Dynamic can predict EF with human accuracy (mean error of 4.1%), accurately identify HFrEF (AUC = 0.97), and is more consistent than humans on prospective repeat testing.pic.twitter.com/WyfANFuFNT
U tweetove putem weba ili aplikacija drugih proizvođača možete dodati podatke o lokaciji, kao što su grad ili točna lokacija. Povijest lokacija tweetova uvijek možete izbrisati. Saznajte više
2/7 EchoNet-Dynamic can predict EF with human accuracy (mean error of 4.1%), accurately identify HFrEF (AUC = 0.97), and is more consistent than humans on prospective repeat testing.pic.twitter.com/WyfANFuFNT
3/7 Using past human labels from our echo reporting database, we precisely perform semantic segmentation of the left ventricle. DSC = 0.92. This beat-by-beat, every frame, frame level labeling would be too laborious for humans in clinical practice!
4/7 With this precision phenotyping, we can quantify beat-to-beat variation across the video and see more variation in AF and ectopy.pic.twitter.com/BlzNUgOwEj
5/7 EchoNet-Dynamic was implemented in @pytorch and the code is available at:https://github.com/douyang/EchoNetDynamic …
6/7 And thanks to our friends @StanfordAIMI @curtlanglotz @mattlungrenMD, we will be releasing our dataset before the #ML4H workshop at @NeurIPSConf. 10k deidentified A4c echo videos used to train EchoNet-Dynamic as a resource for ML.
7/7 Tremendous thanks to @HeartBobH , @GhorbaniAmirata and the @StanfordMed #echofirst lab. @paheidenreich David Liang, Ingela Schnittger. @ASE360 @StanfordHealth @StanCVFellows @StanfordDeptMed
8/7 (Oops!) Our @medrxivpreprint is athttps://www.medrxiv.org/content/10.1101/19012419v2 …
This is excellent work! Congratulations!! I’ve never seen Echo software auto-quant the beat-to-beat variation in AF the way you did with #EchoNet-Dynamic. Very impressive. In NSR, how does your software compare to, say, @PhilipsEcho HeartModel software that comes on the Epiq?
I don’t have much experience with HeartModel but would love to compare! @PhilipsEcho
Congrats on this impressive work!
Thanks Wunan!
Twitter je možda preopterećen ili ima kratkotrajnih poteškoća u radu. Pokušajte ponovno ili potražite dodatne informacije u odjeljku Status Twittera.