Conversation

There is nothing well defined about what an out-of-bounds access or use-after-free will access. The compiler, linker and even runtime environment are assuming that is never going to happen and there's nothing defined about what the consequences are going to be from the C code.
3
1
That's not a relevant response related to the thread. He states that he wants an optimizing compiler with a comparable amount of optimization, where the programmer is writing code for an abstract machine and the compiler is making transforms that preserve abstract semantics.
1
I would definitely say that the standard should not say things are 'undefined' but rather come up with sensible constraints on how it should be implemented. Guaranteeing that signed overflow wraps would be a regression for safe implementations by forbidding them from trapping.
2
1
Guaranteeing it either wraps or immediately traps would also be a regression, by forbidding more efficient implementations that trap as late as possible by propagating overflow errors via poison bits or poison values. UBSan is explicitly not designed as efficient. It's difficult.
1
1
I do think the standard should forbid treating signed overflow as something that is guaranteed to never happen in order to optimize further, and the same goes for other cases like this. It's near impossible to do that for memory safety issues without requiring safety though.
1
1
Clang and GCC both implement it for both signed and unsigned integer overflow. It's not a hard sell to them. It's impractical to use it for unsigned overflow largely because it's well-defined and there are lots of intended overflows that are not actually bugs in the software.
2
2
The standard permitting trapping on signed overflow for portable C code is useful regardless of what compilers do by default. A safer language would not only have memory / type safety but would consider integer overflow to be a bug unless marked as intended (Swift and Rust).
2
1
It makes a difference, but it's not a crucial optimization. The way it tends to make a difference is letting the compiler assume that the loop terminates in common cases where it can't determine that. If the loop doesn't terminate, that's a side effect, so it can't be removed.
1
Show replies
In Rust, both signed and unsigned integer overflow is always considered a bug. Intended overflows need to be marked and it supports wrapping for both signed and unsigned via the appropriate APIs. It traps for unintended overflows in debug builds by default and can in production.
3
2
Show replies