Conversation

Weak pointers also make things even more unsafe for similar reasons as the baseline with unique pointers and shared pointers. Same applies to types like std::string. You have automatic free at end of scope, even after you've taken references / string views. Fundamental issue.
1
And yet, with no get(), and only using the uniq_ptr directly, you avoid a whole class of problem, and you still convey the ownership information to the reader. You can still move ownership to other class. I can't see how it happen when using raw ptr only at the uniq_ptr scope.
2
In fact I never ever used uniq_ptr::get() directly. I only used uptr->type. (shared_ptr has its issues, but its still better than C ptr generally speaking, rust gives a better scope compile time analysis, but C++ gives you some of that. It's not as good, but better than 0 of C)
1
C++ doesn't provide any compile-time safety from use-after-free, since references have no safety and are even implicit. Where are you even using std::unique_ptr? I don't find that there are many use cases for unique pointers other than implementing tree data structures.
1
A std::unique_ptr is no safer than a value on the stack, which is unsafe in C++. It only introduces the additional problems of having null pointer dereferences and encouraging use-after-move. The fundamental problem is that it frees when there are still active references.
1
Having that free as automatic / implicit certainly makes it harder to leak memory, but in the real world I don't think it improves safety. Many of the memory corruption bugs that I find are due to use-after-free largely missed due to implicit C++ destruction at the end of scope.
1
No need to document something that's already standard for any value type. Should be using proper types for resources like a proper file type rather than defining ad-hoc dynamic versions using std::unique_ptr. Open coding these low-level things is a bad idea in general.
1
Show replies