Conversation

Compilers are extremely bad at proving termination and the issue with the sideeffect intrinsic is it acts as a universal side effect and is not handled by optimizations. It is treated as potentially doing global memory writes, etc. and completely breaks all other optimizations.
1
So for example, you can have a simple loop over an array based on the length, and the compiler may not be able to tell that terminates since it can't tell that the length of the array isn't changed (even though a human trivially can). If you insert the intrinsic it destroys perf.
2
It depends on the simplicity of a condition and how it's written. You could write a binary search so that the compiler can see that it always terminates, but it wouldn't be the normal way to write it, etc. Many loops are not going to be verifiable as trivially terminating.
1
Mutually recursive function calls are another case that's very difficult. In order to avoid treating every single function call as needing to have that universal side effect inserted (destroying tons of optimization), the compiler would have to analyze the call graph.
1
Even if the recursion isn't via guaranteed tail calls stack overflow is well-defined and safe in these languages. It CANNOT be replaced with arbitrary memory corruption. They're saying that even remotely safe languages should have significantly worse compile-time and performance.
2
It's difficult for a compiler to know if it happens though. It would need to do whole program analysis to build a potential call graph to avoid being able to insert a massive number of these performance killing intrinsics. Indirect calls also make it much harder to figure it out.
1
Except that in the LLVM layer, functions without always_returns don't get penalized by being forced to pretend they have a universal side effect, just because the compiler couldn't prove they don't return. Instead, it just can't be as aggressive with hoisting / removal.
1
Show replies
Show replies