Bruno Santos

@BrunoSa78585100

Physicist from Portugal . Autonomous Engineer

Oxford, England
Vrijeme pridruživanja: siječanj 2019.

Tweetovi

Blokirali ste korisnika/cu @BrunoSa78585100

Jeste li sigurni da želite vidjeti te tweetove? Time nećete deblokirati korisnika/cu @BrunoSa78585100

  1. 20. stu 2019.

    “A 100x Investment (Part 1)” by

    Poništi
  2. proslijedio/la je Tweet
    20. kol 2019.

    What is the value of science? Richard Feynman struggled with this question after World War II. In this 1955 essay he presents what he believes to be the true value of science. Learn more here: A great paper for your summer ☀️reading list 📚

    Poništi
  3. proslijedio/la je Tweet
    8. kol 2019.

    "If people do not believe that mathematics is simple, it is only because they do not realize how complicated life is." - John von Neumann

    Poništi
  4. proslijedio/la je Tweet
    6. kol 2019.

    A Discussion of 'Adversarial Examples Are Not Bugs, They Are Features' - Six comments from the community and responses from the original authors.

    Prikaži ovu nit
    Poništi
  5. 23. srp 2019.
    Poništi
  6. proslijedio/la je Tweet
    16. srp 2019.

    "Awesome Graph Classification" -- A collection of graph classification methods, covering embedding, deep learning, graph kernel, and factorization papers with reference implementations

    Poništi
  7. 12. srp 2019.
    Poništi
  8. proslijedio/la je Tweet
    24. lip 2019.

    when someone asks what happened to that side project I was working on

    Poništi
  9. proslijedio/la je Tweet
    12. lis 2018.

    It's been a great two centuries.

    Poništi
  10. proslijedio/la je Tweet
    23. svi 2019.

    I'm very happy to announce the 0.3 release of torchvision. It brings several new features, including custom C++/CUDA ops, pre-trained Mask R-CNN models and much more! Check it out at Plus, training Mask R-CNN is even faster than in maskrcnn-benchmark!

    Poništi
  11. 7. svi 2019.

    Is down ?

    Poništi
  12. proslijedio/la je Tweet
    26. velj 2019.

    A neural net trained on weather forecasts & historical turbine data predicts wind power output 36 hours ahead of actual generation. Based on these, our model recommends optimal hourly delivery commitments to the power grid 24 hours in advance.

    Prikaži ovu nit
    Poništi
  13. 12. sij 2019.

    BrunoEduardoCSantos/Image-Captioning: Image captioning using LSTM and Resnet tutorial about and image captioning

    Poništi

Čini se da učitavanje traje već neko vrijeme.

Twitter je možda preopterećen ili ima kratkotrajnih poteškoća u radu. Pokušajte ponovno ili potražite dodatne informacije u odjeljku Status Twittera.

    Možda bi vam se svidjelo i ovo:

    ·